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Anlysis of a Third-Integral Resonance

In preparation for the Aladdin experiments, I will give an analytic

treatment of a third-integral resonance. By starting from the equations for

an actual ring, we can then connect the analytic parameters with the real

ring.

1. Anlysis of the Resonance.

The Hamiltonian in the neighborhood of the third-integral resonance

3v m can be written in terms of angle-action variables J, Y in the form

h = vJ - S(2J) 3/2 sin(3Y-me + 3 s) + !a(2J) 2
4 (1. 1)

where I have suppressed the subscript x on v, J, y, and S, a, s, are

parameters to be connected later with the real machine. The independent

variable e runs from 0 to 2n around the ring. I have kept only the linear

term, the resonance term, and a frequency shifting term. All other terms are

assumed transformed away; their effects remain only in the frequency shifting

coefficient a.

We first transform to a rotating coordinate system via the

generating function

F (d:, y, e) m
d:(Y - '3 e + s) , (1.2)

which gives
y y -~ e + s, J = J, h = h -~d: (1.3 )

the new Hamiltonian is

h m) 3/2. 1 2
(v - '3 J - S(2J) sin31 + ¡a (2J) , (1.4)

where J is written for J = J. In rectangular canonical coordinates
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x (2J)1/2siny , P == (2J)1/2cos i (1.5)

h is
h == 1:(V - ~)(X2 + p2) - :3 sxp2 + SX3 + ~a(x2+i?)22 3 if (1.6) .

If we omit the term in a, then at the. sepa:ratrix, Eq. (1.6) factors into the
product of three st:raight lines:

S(X - V~~/3J (!3P + X + V;~/3) (/3P - X - V;~/3J == 0 . (1. 7)

The phase plane for this case is shown in Fig. 1. The limiting value of X at

the separatrix is

X == (2J )1/2s S I v-m/313S . . (1.8)

If we keep the frequency shifting term, it is easier to work with

the Hamiltonian in the form (1.4). The fixed points occur where

dh

d1 == -3S(2J) 3/2 cos3y == 0 ,

and

dh m 1/2 .
ãJ - v - 3 3S(2J) sin31 + a(2J) == 0 . (1.9 )

The solutions are:

y == TI / 6. 5 TI /6, 3 TI /2 and TI / 2, 7 TI / 6. 11 TI / 6 ,

(1.10)

(2J) 1/2 == (1')3S :f ((3S)2 _ v-m/3) 1/22a 2a a
where the upper sign in (f-) refers to the first three solutions for i. and the

lower. to the second three. There are three cases:
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a) S2 ( (4/9)(v - m/3)a ((v - m/3) and a have the same signJ.

No roots. Phase plane shown in Fig. 2.

b) S2) (4/9)(v -- m/3)a ) 0 .

Two roo t s; we mus t choose l so (:l)S/a ) O. Separatrix has ears

(Fig. 3) .

Xs (2J )1/2 I~I -
( (3S)2 __

v-m/3 J 1/2
S 2a 2a a

(loll)

Xo (2J ) 1/2 13S I + (eS)2 --
v-m/3 1/2

0 2a 2a a J

c) (v -- m/3) and a have opposite signs.

One root for each sign in (:l). Separatrix has islands (Fig. 4).

Xs (2J )1/2= -I 3S I + ((2ê)2 + m/3-vJ 1/2S 2a 2a a
Xo

1/2
(2J )1/2 = + I~I + ((2ê f + m/3-vJo 2a 2a a

(1.12)

It is not easy to calculate the sizes of the loops in cases b)

and c). Let us consider the exactly resonant case, v = m/3, shown in

Fig. 5. (Fig. 5 is drawn for the case S/a ) O.J The solution of Eq. (1.9) is

Xo = (2JO)1/2 = I;S I , (1.13)

The separatrix is given by the equation

h = __S(2J)3/2 sin(31)+ ¡a(2J)2 o , (1.14)

whose solution on the ray through the elliptic fixed point is the origin and

x = (2J )1/2i i I~I .a (1.15)
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2. Connection with the Real Ring.

We start with the Hamiltonian for the real ring (e.g., Aladdin), in

terms of the variables x, y, and the independent variable s (àis tance measured

along the central orbit):

H = 1:(p 2 +real 2 x
2 1 Z Z Bn 3 2
) + -(K X + Kyy ) + 6B (x - 3xy ) ,2 x 1

¡

(2.1 )

where we have included linear and sextupole terms. Higher-order terms can be

added without changing the treatment essentially. The momenta are defined by

ôH dz
pz = K ds

z
Zl , (Z. 2)

where z is either x or y. We make a canonical transformation to the angle-

action variables for the linear motion:

z =
ß l/Z (2J ) l/Zsin(y _z z z

(Z. 3)

Pz S-;/2(ZJz)1/2rcos(yz - ijz) - 4zsin(yz - ijz)J ,

where ijz(s) is defined by

ij (s)z

s
f r s -1 - v /R J ds ,z z (2.4 )

where the constant of integration is arbitrary and may be chosen to make

(ijz) = 0, and ZrrR is the circumference. The resulting Hamiltonian is

Haa v J /R + v J /R + ~rx3 - 3xyZJ ,x x y Y 6Bp (2.5)

where we substitute in the square brackets for x and y from Eq. (2.3). The

sextupole terms may be transformed away (see Section 3 below), except for

terms which drive the resonance 3vx - m = O. The result is to add a

polynomial in Jx' Jy to the linear terms in Eq. (2.5). None of the nonlinear
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terms in the ideal lattice drives the resonance. Let us assume they have been

transformed away, and that there remains only the single sextupole which we

use to exci te the resonance:

Hf v J /R + v J /R + (a/R)J 2 + 2(b/R)J J + (c/R)J 2xx yy x xy y
B" J/ 3 2

+ 6Bp Ô(s-Sj)(x - 3xy J (2.6)

where the sextupole is at s = s j' and we have included non-resonant terms

through fourth-order in Jl/2. In case the resonance is driven by

imperfections in the lattice, the last term becomes a sum over imperfection

sextupoles; these terms can be handled in essentially the same way as we treat

the driven sextupole below. The coefficients a, b, c define the change in

tune with amplitude. The nonlinear tunes are

Nx

dy
R~ds

ôHf
= RaJ

x
v + a(2J ) + b(2J ) ,x x y

N
Y

dy
R--ds

ôHf
RaJ

Y

(2.7)
v + b(2J ) + c(2J ) ,y y y

where 2Jz Zmax2/ßz is the square amplitude of the motion.

To simplify the algebra, we now set y = 0, and consider only the x-

motion near the resonance. The Hamiltonian is

Hfr v J /R + (a/R)J 2 + B6B"PJ/ Ô(s-.,Jd)(2J )3/2ß 3/2 sin3(y - ~ )xx x I-.. x x x x
(2.8)

:; v J /R+(a/R)J 2+ B6B"9v3/2ß'1 ô(s-sj'j)2J )3/2(_;' sin3(y -~ )+ ~in(y -~)J .xx x p x x ~ x x q x x
We may expand the periodic delta-function in a Fourier series:

Ô(s - s .)
J

00 im(s-s .)
L e J /2TfR

m=-OO
(2.9)
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It will also be convenient to change to an independent variable e, which

increases by 2n around the ring:

s ==/eIR e (2.10)
It is easy to see that the effect is to multiply the Hamiltonian by R. The

result is
00

He vJ +aJ2+x x x L: S(2J )3/2r-sin(3Y -me + mRsj - 3w .)x x XJ
m== _00

ms .
+ 3sin(yx - me + ~ - 3WXj)) . (2.11)

where

S

S3/2B" i

(48~ B/1 )
P

s==s
j

(2.12)

All the terms except the resonant term can be transformed away (see below).

The result is

Hres == v J - S(2J )3/2sin(3Yx x x x - me + mRs j - 3 W .) + aJ 2XJ x (2.13)

where m is now the fixed value associated with the resonance (m

Aladdin experiments). This is the Hamiltonian (1.1), with
22 for the

ç == w . + ms . /3R .xJ J (2.14)

After transforming away the non-resonant terms, we are left with

variables J, Y which differ from those in Eq. (2.3) by terms of order Jl/2 and

higher. We will neglect this difference. and identify the final variables J,
Y with those in Eq. (2.3). Since all transformations are canonical, the final

variables J will be associated wi th phase curves having the same area as those

associated with the original variables J e
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3e Transforming the Non-Resonant Termse

There are va;rious ways of transforming away the non-resonant terms,
all of which should give the same eventual result. We proceed as follows.

Define a transforma tion J, Y + ~, 1 defined by the genera ting function

3/2 ms.
F(:!,Y,6) = Jy + ~i(2,~O (Fm3cos(3y-m6 +--

m

- 3i/.)
J

+ Fm1 cos(y-m6 + ms/R -i/j)J, (3.1)

where the summa tion is over all terms corresponding to those in the sum in

Eq. (2.12) except the resonant term, and we ~uppress subscripts x for

convenience. The resulting transformation is

dFJ - = J
- ãY

¿'(2J)3/2(3F 3sin(3y-ms./R-3i/.)¡¡ - m J J

+ F 1 s in (y - m 6 + ms ./R - i/.)) ,m J J (3.2)

_ dF
Y - dJ y + ¿'3(2J)1/2(F 3sin(3Y-m6+ms./R-3i/.¡¡ - m J. J
+ F 3 s in (y-m6 + ms ./R - i/.)) .m J J (3.3)

The new Hami 1 tonian may be wri t ten

dF
!!e= He+ aë VJ S(2J)3/2sin(3Y - me + ms./R - 3i/.)- - J J
+ ¿' (2J)3/2sin(3Y _ m' e + m's ./R - 3il.)(-S + F 3(m-3V))

~,
.- J J m

-

+ ¿;i (2J)3/2sin(y _
m' 6 + m's ./R - i/.)(3S+F i(m-v))

~, - J J m
-

+ aJ2 + H4 + h.o.t. , (3.4)



8

where H4 includes the fourth-order terms, and h.o. t., the higher-order terms

that come from the substitution. We eliminate the non-resonant third-order

terms by setting

F m3 S/ (m - 3 v) ,Fm1 -S/3(m - v). (3.5)

The terms in H4 include 8-independent terms arising from squared sines plus
8-dependent terms, which we may again transform away to higher order by the

same method. There remain to fourth order in Jl/2 only the terms

Hrc vJ - S(2_J)3/2sin(3_Y - m8 +.ms./R - 3il.) + .(a +a )i,J J s (3.6)

where the addition to a, due to the added sextupole, is

as 6S2 ¿' ( 3 + 1 Jm'-3v m'-V
m'

. 6S2(- ~v + 3ôv + 60(3v)), (3.7)

where ov = v - m, and m is the nearest integer to v. Note that the resonant

contribution -1/ ô(3v) does not appear, since the resonant term is included

explicitly in Eq. (3.6). The coefficient a itself arises from the sextupole

terms in the lattice itself, plus any octupole terms. However, it is easier

to get a from Eq. (2.7).
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