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In order to study diffusion in any region of phase space containing nested 
closed curves we choose action-angle variables, y /J . The action J labels each 
closed phase curve and is equal to its area divided by 2rr. We can introduce 
rectangular variables Q , P by the equations 

Q = (21Y/2 sin y , 

P = (2J)1I2 cosy, 
(1.1) 

where the angIe variable y is measured clockwise from the P -axis. The phase 
curves are circles in the Q ,P plane with radius (2J )1/2. We assume that the 
motion consists of a Hamiltonian motion along a curve of fixed J (in the 
original coordinate system and in the system Q , P ) plus a diffusion and a 
damping which can change the value of J . 

Now consider a system of particles described by a density p(J ,t), so that the 
number of particles between the CUrves J and l+dI is 

dN = p(l,t)dJ . (1.2) 

These eN particles are distributed uniformly in the phase space between the 
curves 1 and l+dI. 

2. The Diffusion Equation. 

Let [(1) be the net current of particles per second passing any orbit 1, de­
fined as positive in the direction of increasing 1. [ is a sum of a diffusion 
current and a damping current: 

8p pl 
[(l,t) = - D(J) 81 - 2T . (2.1) 

The diffusion current is by definition proportional to - d pi d 1 with a diffusion 
constant D(1) which may depend on 1. The damping current is negative and 
is proportional to p and inversely proportional to the damping time T; we will 
show in a moment that it also contains the factor 1/2. 
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The time rate of change of the number of particles in the interval dJ is 

~n ar 
~dJ = 1(1) -1(1 +dJ) = --~ dJ . 
at aJ 

(2.2) 

We substitute from Eq.(2.1) to obtain the diffusion equation: 

a p a ( ap) a (PJ) at = aJ~ JX.J) aJ + aJ 2T . 
(2.3) 

This is a continuity equation for the particle density p. It guarantees that 
particles are conserved in the region where it holds, though they may flow in 
or out at the boundaries. 

If we put D(J) = 0, the general solution of Eq.(2.3) is 

(2.4) 

as may be verified by direct substitution, where F(w) is an arbitrary function. 
Equation (2.4) is what we want, since it says that p(J,t)dJ remains constant if 
the J of each particle damps with the time constant 2T, where T is the time 
constant for the damping of the amplitude (21)1/2. 

Equation (2.3) reqUires two boundary conditions and the initial function 
p(J, 0). One boundary condition is that the current (2.1) must vanish at the 
origin J=O. The second is often that the density P(Jb, t) vanish at a boundary 
value /b, which may for example be the curve that intersects the vacuum 
chamber waU, or a separatrix beyond which the motion quickly becomes un­
bounded. 

3. The Diffusion Coefficient. 

To find the diffusion coefficient from first prinCiples, we would need to 
study the changes in J produced by whatever coUisions and other processes 
are causing the diffusion. At this point we wiH avoid this problem by using 
the fact that we know the effect of diffusion and damping in an infinite aper­
ture is to produce a Gaussian equilibrium distribution in the amplitude 
(2J)1/2: 

-Jlr; 2 e 
p(J,oo) = N-2- , 

cr 
(3.1) 
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where (J' is the nTIS emittance of the equilibrium beam and N is the total 
number of particles. Note that the details of the scattering processes which 
cause the diffusion are now buried in the constant (J' . 

At equilibrium P (1) does not depend on t, so Eq.(2.3) requires that the cur­
rent be constant: 

ap Jp 
- D(l)- - - = constant = ° 

aJ 2T I 

(3.2) 

where we use the boundary condition that the current must vanish at J=O. 
We substitute from Eq.(3.1) to obtain the diffusion coefficient: 

D(J) = J(32 . 
2T 

(3.3) 

Note that this form of the diffusion coefficient guarantees that the current 
(2.1) win vanish at J = 0, provided the density p(J) is wen-behaved there. 
Equation (2.3) has a singular point at J = 0, with the diffusion constant (3.3). 
We will see in the next section that near 1 = 0, there are both well-behaved 
and Hl-behaved solutions of Eq.(2.3). The boundary condition then selects the 
wen-behaved solution there. 

4. Diffusion to a Boundary. 

We now consider diffusion from a region in phase space bounded by a 
boundary lb and solve Eq.(2.3) in the region ° :::; 1:::; lb. Let us solve Eq.(2.3) by 
expanding p(J, t) in eigenfunctions of the operator on the right side of Eq.(2.3): 

p(J,t) = I cePe(l)e '1 , (4.1) 
l 

where Pe(l), Tt satisfy the eigenvalue equation 

(4.2) 

and the constants Ct are chosen to satisfy the initial condition. One boundary 
condition requires that the eigenfunctions vanish at J = It.. At J = ° the cur­
rent win necessarily vanish unless apt lal is infinite. If we substitute for prj) 

in Eq.(4.2) a power series whose first term goes like Jr, we find in the standard 
way that r2 = 0, so that there is a double root at r = 0, and we have only one so­
lution (apart from an arbitrary constant factor). This is the well-behaved solu-
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tion picked out by the boundary condition at the origin. The other solution 
turns out to behave like In(J) near the origin. 

On physicai grounds, we expect the eigenvaiues (-lITt ) to be negative, so 
that the solutions are damped with time constants Tt. If we arrange the 
eigenvalues TO, TI, ... in increasing order, then after some time the solution 
(4.1) win be approximated by its first term and will damp exponential1y with 
time constant TO, keeping its characteristic shape Po(J), provided that the next 
smallest time constant TI is not too close to TO. The solution consists of an 
initial transient described by the remaining tenns in the sum plus a final state 
whose shape is independent of the initial distribution. 

Note that for an infinite aperture the smallest eigenvalue of Eq.(4.1) is zero 
(To is infinite) and the corresponding nonnaHzed eigenfunction is the solu­
tion (3.1) with N=1. The general solution win again contain an initial tran­
sient depending on the initial distribution. 

We can convert Eq.(4.2) to an integral equation. Equation (4.2) can be inte­
grated immediately to obtain 

(4.3) 

where we have applied the boundary condition that the current vanishes at 

f = O. The left side has the integrating factor eJta2
• We multiply by this factor 

and integrate again: 

(4.4) 

This is the integral equation for the eigenfunction Pt. Note that if we solve 
the equation iteratively by repeatedly substituting the right hand side for Pe in 
the integral, we obtain Pt as a power series in Tt -1. If after N iterations we use 
the result to apply the boundary condition at f = fb, we can solve for the N 
largest values of Te. 

The first tenn in the solution (4.4) is the steady state solution (3.1) corre­
sponding to an infinite Tf. Let us nonnalize it (approximately) to correspond 
to one particle: 

-Jta 2 
e 

PeCl) = --2- , (zeroth approximation). 
(J 
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This nonnalization does not quite correspond to a single particle both because 
it is to be integrated only to 1 = 1 f and because it is only the first term in a se­
ries. If we substitute this into the integral in Eq.(4.4) we get the second term in 
the series. The inner inteol al can be evaluated immediateiy: 

(4.6) 

This could be substituted into the integral in Eq.(4.4) to get a second approxi­

mation, and so on. If 1> > a 2
, then the first approximation (4.6) should be a 

good approximation to the eigenfunction Po corresponding to the smallest 
eigenvalue TO-I. 

If we apply the boundary condition PO(Jb) = 0 to the first approxima­
tion (4.6), we can solve for TO: 

where 

1 
~=-2 . 

a 

(4.7) 

(4.8) 

Equation (4.7) involves an exponential integral. Since it is only valid when 
~> > 1, we can evaluate it as follows: 

(4.9) 

where the constant C2 includes the first integral and the contribution from 
the lower limit of the third. We have chosen to break the integral at 1=2 so 
that successive tenns in the bracket in the second line will grow smaller; any 
number greater than 1 would do. The last term in the second line is obtained 
by successive integrations by parts. In the last line we have written only the 
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dominant term for large~. If we substitute in Eq.(4.7) we obtain the Sands 
formula: 

ff 
T =2T-

o ~ 
(4.10) 

Note that this derivation requires no enquiry into the details of the scattering 
process causing the diffusion nor the process causing the damping. The 
formula applies to diffusion caused by quantum emission, gas scattering, or 
any other multiple scattering processes; we need only know the damping 
time and the net rms width (J of the resulting gaussian distribution for an 
infinite aperture. 

In the form (4.7) our formula approaches zero as it should for ~=O: 

(4.11) 

although this formula is not accurate since formula (4.7) holds only for large 
values of ~. 

5. Some Technical Questions.. 

It is not dear that Eq.(4.1) represents the general solution of Eq.(2.3) The 
operator in the left member of Eq.(4.2) is not self-adjoint, so its eigenfunctions 
may not in general be orthogonal, nor do they necessarily form a complete 
set. 

However the solution for the largest eigenvalue TO does correspond to an 
exponentially decaying solution which should remain after initial transients 
have disappeared. If we can solve for the next highest eigenvalue Tl. that win 
give an indication of the time required for the transients to die out. 

Let us find the second eigenvalue for the problem discussed in Section 4 
above. To simplify the algebra, let us replace the action variab1e J by the 
dimensionless variable 

(5.1) 

and renormalize Pi to the integration variable w. Eq.(4.4) then becomes 

-w 2T -wfo ew'~, Pl(w) = e - -e dw - Pl(w")dw" 
T t 0 w' 0 

(5.2) 
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The first approximation (4.6) to the solution is 

-w 2T -wScwew
' -1 -w 2T »1 Pe(w) =e --e 0 --dw'::::e --, w 

T[ W TeW 
(5.3) 

We need only the asymptotic value of Pt for large w. We substitute this into 
Eq.(5.2) to obtain the second approximation: 

where we have kept only the dominant terms for large w. We now apply the 

boundary p:;;~t:::e_' _(2TJ! +(2T)2ln~ , (5.5) 

Te ~ Te ~ 

whose two roots for ~» 1 are 

(5.6) 

The first solution is the Sands formula for the final decay time. The second 
gives the decay time for the longest lasting part of the initial transient. Note 
that TI becomes infinite for large ~, but much more slowly than TO , so that the 
transient does indeed die out rapidly compared with the final decay rate. 
Note also that the second eigenfunction PI has one node near W=~, but it is 
not orthogonal to Po; it is nearly equal to Po over most of the range of w, so we 
would need higher-order eigenfunctions to match the most likely initial 
distributions, even assuming they are a complete set. The fact that PI differs 
from Po only in the tail of the distribution reflects the fact that the tail is the 
region which damps most slowly into the final configuration. 

If we try to take the limit of an infinite aperture (~-+oo) both decay times go 
to infinity, so we fail to find the transient for the infinite aperture case. 

Numerical solution of Eq.(2.3) should yield the complete solution in any 
case. 
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6. Diffusion Between Islands. 

Let us study the diffusion of beam between the islands and the central 
triangle near a third-integral resonance. We have to solve the diffusion 
equation (2.3) in two separate regions, the islands (0 :::; J :::; Jbi) and the central 
triangle (0 :::; J :::; Jbd. The s01utions are linked by boundary conditions which 
specify the current from the islands to the center and vice versa which are 
proportional to the densities at the boundaries: 

(6.1) 

We are assuming that the damping time is short compared with the 
diffusion time, so that we can neglect the time spent by a particle in the outer 
region beyond the islands. Any particle escaping into this region will quickly 
damp into either the islands or the central triangle. If this were not the case, 
we would have to solve also for the diffusion in the outer region with 
equations like (6.1) connecting it with the islands and the central triangle. 

We can evaluate the constants k in Eq.(6.1). We note that except near a 
fixed point the separatrices which bound the various regions are locally 
indistinguishable from any other phase curve. We recognize a separatrix 
only by viewing it globally. The processes, scattering and damping, which 
drive particles across a separatrix are local and hence the same as those which 
drive a particle across any phase curve. Moreover since they are local we can 
evaluate the current across any phase curve as if the region in which it is 
located extended to infinity. Let us therefore take the equilibrium case [e.g. 
the solution (3.1)J when the total current is zero. The current is given by 
Eq.(3.2) in which we have a balance between an outward diffusion and an 
equal inward damping The outward diffusion current is equal and opposite 
to the second term, so the constants kin Eq.(6.1) are 

k = (XCJbC 

, C 2 ' 'tc 
(6.2) 

where (Xl is the fraction of particles diffusing out of the islands which go into 
the central triangle, and (Xc is the corresponding fraction diffusing from the 
center into the islands. The constants T are the damping times which may be 
different for the islands and for the central triangle. The reader who does not 
accept this argument may regard the constants (X as suitably chosen constants 
which give the correct values for the constants k. 

Let us first find the steady state solution. Equation (2.3) tens us, just as in 
Section 3, that in the steady state the currents are constant and by the 
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boundary condition at 1=0 the currents must be zero. The solutions are then 
the same as in Eq.(3.1): 

(6.2) 

where NI and Ne are approximately the number of particles in the islands and 
the central triangle respectively. The solutions (6.2) extend only out to the 
boundaries, but if 1»0 for both regions then the integral of p(J) from the 
center to the boundary of either region will give nearly the coefficient N. 

Since the net current is zero, the boundary conditions require that the two 
currents (6.1) be equal: 

(6.3) 

We can solve for the ratio of the particle numbers: 

(6.4) 

where in the third member we have introduced the times 

and (6.5) 

for the diffusion of beam from the islands and from the central triangle 
according to the Sands fonnula, i.e. if aU particles are lost at the boundaries. If 
the total number of particles is N then we can write 

(6.6) 

We next seek the solution which damps at the slowest finite rate. It win 
have to satisfy Eq.(4.2) in both regions with the same damping time 'fl. The 
boundary conditions reqUire that the current approaching the boundary from 
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within each region be given by Eqs.(6.1) and (6.2): 

_ JbfJ / apn J - Pn(Jbl)Jbl = aIJblPn(JbJ) _ aCJbcPa (JbC) 
. 2T [ aJ lbr 2T [ 2T[ 2Tc 

_ JbP/ apCl] _ PCJJbC)JbC = aCJbcPa (JbC) _ aIJblPn(Jbl) 

2T C aJ lbe 2Tc 2Tc 2T[ 

(6.7) 

N ate that the sum of these two currents is zero, giving conservation of 
particles. Because the boundary condition at J=O is the same in aU regions, the 
solutions of Eq.(4.2) for islands and central triangle will have the same 
form as in the case studied in Section 4. Near the boundaries we can use the 

as)"nPtoti:,:;:~ :F'~;,' E_q;~J~J.6) ~n:c~:;~ Cck""," _ 2TJcJ ' (6.8) 

l (J I Tl l (J c T 1 

where q and Cc are arbitrary constants. We substitute into Eq.(6.7). The first 
terms give no current in the left members. In the right members they can be 
replaced by the expressions in Eqs.(6.5). The result is 

(6.9) 

The second terms in the brackets in the left members are negligible by 
assumption. Since the right members are equal and opposite in sign, so must 
be the constants C1 and Cc : 

C = -c = 1 I C I 
(6.10) 

where we have normalized the eigenfunction P 1 by setting the constants to 
unity. Either equation now gives 

a l a c -+-
l.. _ T IO Tco 

l+a]+a c 
(6.11 ) 

This equation gives the damping time for diffusion between regions in terms 
of the damping times for diffusion out of the regions and the fractions a. 

In the solutions (6.8) the second terms are negligible compared with the 
gaussian first terms except near the boundaries. The solution is therefore 
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normalized to one particle in the islands and minus one in the central 
triangle. The total number of particles is zero, as it must be if the solution is 
to be damped and still conseIVe total particle number. 

We can now find the SOlution corresponding to N particles initially in the 
central mangle and none in the islands. The final state is given by Eqs.(6.2) 
and (6.6). To get the initial state, multiply the normalized damped 
solution (6.6) above by -N/ and add it to the solution (6.2). This gives the 
initial state except for small terms near the boundaries. As the damped 
solution dies away with time constant tl the solution approaches the 
equilibrium solution (6.2). Except near the boundaries, the solution in each 
region is essentially a gaussian which dies out exponentially in the central 
triangle and grows exponentially in the islands. A similar solution can be 
found for the case where the beam is initiany in the islands. 
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