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Abstract

In the design of modern acceleratorsl’an accurate estimate of coupling impedance
is very important. The sources which give rise to coupling impedance are the geo-
metric discontinuities in the accelerator beam pipe. In various discontinuities such
as RF cavitiesI'bellowsI’and collimatorsI'the coupling impedance of the holes has not
been well understood. Although coupling impedance can be obtained in general from
the Fourier transform of the corresponding wake potential which may be obtained
numericallyl'this is time consuming and requires a large amount of computer storage
when applied to a small dimension of a discontinuity in a typical beam pipel'often
imposing a fundamental limitation of the numerical approach. It is especially true
for the holes since the typical size of a hole is small compared with the dimension
of a typical beam pipe. More fundamentallyl’howeverl'numerical calculation does
not have the predictive power because of limited understanding of how the coupling
impedance of a hole should behave over a wide frequency range. This question was
studied by developing a theoretical analysis based on a variational method.

An analytical formula for the coupling impedance of a hole is developed in this
work using a variational method. The result gives good qualitative agreements with
the coupling impedances evaluated numerically from the Fourier transform of the
wake potential which is obtained from the computer code MAFIA-T3. We show
that the coupling impedance of a hole behaves quite similar to the impedance of
an RLC-resonator circuit. Important parameters used to describe such a resonator
circuit are the resonant frequency and bandwidth. These parameters can be easily
determined from the formula presented in this work. We provide a theoretical insight

on how to parameterize properly the numerical impedance of a hole when data exhibit
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complicated dependence on frequency. This is possible because we can show that the
parameters are a function of the dimensionless quantity kd alonel'with k the free-space
wave number and d the radius of hole.

In summaryl'we will develop an analytical method for the hole-coupling problem

valid for a wide range of frequencies.
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Chapter 1

Introduction

1.1 Introductory Remarks

In a circular acceleratorl’a charged particle gains energy from the electromagnetic
field in RF cavities. In electron storage ringsI' RF power should compensate the
synchrotron radiation loss experienced by the charged particle. While an accelerator
is designed such that particles execute a stable longitudinal oscillation in the potential
well provided by the RF systemI'they should be stable in the transverse directions as
well. For transverse motionl'the interaction is between the charged particle and the
external magnetic field which provides the transverse focusing force. Since both RF
fields and magnetic fields are supplied by the system external to particlesI'the motion
in such a field does not depend on the intensity of the beam. Hence we may call this
type of motion single particle dynamics in contrast to a collective motion which is
affected by the beam intensity also.

When an accelerator beam pipe is smooth everywherel'single particle dynamics
alone is sufficient in understanding the behavior of the beam inside an accelerator.
In generall'howeverl'an accelerator beam pipe is not smooth but discontinuous in

its dimension. An obvious discontinuity in a beam pipe is the RF cavities. Other



examples may include bellowsI collimatorsI'and pumping holes. Such unavoidable
discontinuities in an accelerator beam pipe provide rich sources of interaction be-
tween the beam and the surroundings in such a way thatI'when the beam traverses a
discontinuityl'sayl'an RF cavityl'the source field associated with the beam is scattered
leaving the wake field behind the beam. The wake field then acts on the following
bunch of particles or acts on the original beam itself. This self-sustained mechanism is
continued either leading to a stable or to an unstable situation. Since the interaction
depends on the intensity of beamI'the dynamics of the system is often dominated by
the so-called “collective effects.”

In modern accelerators or storage ringsI'the maximum achievable current is lim-
ited by the collective effects. In the equation of motion which characterizes the col-
lective effectsI'the concept of wake potential and its frequency domain counterpartl’
coupling impedancel'have been introducedl'providing a coherent force in the equa-
tion of motion. Thusl'in designing high-intensity accelerators and storage ringsI'one
tries to minimize the collective effects by reducing the wake potential or the coupling

impedancel’and this is the subject of the present work.

1.2 Definition of Longitudinal Wake Potential and
Coupling Impedance

In this section we introduce the definition of longitudinal wake potential and coupling
impedance. Even though mathematically rigorous theorems can be found in the
standard literature [7]I'we emphasize the heuristic concept evolved over many years
in accelerator physics. Once the concept of longitudinal wake potential becomes clearl’

extension to the transverse wake potential is straightforward.



Figure 1.1: Leading (driving) and trailing (test) charges in a pill-box cavity with axial
symmetry.

Let us consider two chargesl'q; and go'traveling with constant velocity on the axis
of an axially symmetric structure. At time ¢ = 0I'the position of leading charge is
defined as z; = 0. At time tI'leading and trailing charges have coordinates z(t) = vt
and z3(t) = v(t — 7)['where 7 is the time delay of the trailing charge (see Fig. 1.1).

Since the wake field excited by ¢, exerts the Lorentz force on the trailing chargel’
the trailing charge experiences the energy change by an amount

o0

AU = —qg/ E. (Z,t _Z + 7') dz, (1.1)
v

— 00

where the electric field is computed at a later time and the unit is [Volt Coulomb].
We define the wake potential W(7) as the energy lost by the trailing charge per

unit of both charges ¢; and ¢ which can be expressed in the form

A 1
_ AU _ Ly (z,t:f+r) dz (1.2)
v

Wir) =
( ) 4192 q1 /-



with the unit of [Volt/Coulomb].

Once the response to a point driving charge ¢; is calculatedI'the wake potential
W (r) can be used as Green’s function to compute the potential in and behind an
arbitrary charge distribution by means of the superposition principle. If the charge

¢ is continuously distributed according to the time distribution function I(7) such

that

0" = /OO I(r)dr, (1.3)

— 00

the trailing charge experiences the effect due to a bunch distribution
Viry= [ Wi =i (1.4)

with the unit of [Volt]. The potential in Eq. (1.4) is sometimes called bunch potential.
Since bunch potential depends on the distribution of charges'wake potential is a more
fundamental quantity as it depends only on the structure surrounding a charge.

If we take the Fourier transform of Eq. (1.4)['we have a response relation in the

frequency domain such that
Z(w)=W(w) = —— (1.5)
where W (w)l'a Fourier transform of wake potentiall'is defined as

W(w) = / T W(r)e i Tdr. (1.6)

Since the quantity Z(w) is the ratio of voltage and currentl'it will be called impedance
or coupling impedance with [Ohm] as its unit.

For the calculation of bunch potentiall’ general-purpose computer codes exist:

TBCI [31] for axially symmetric geometries and MAFIA-T3 [17] for three-dimensional



geometries. Although direct numerical calculation of wake potential is impossible be-
cause of the finite size of the mesh used in these codesI'we can obtain the impedance
via Eq. (1.5) from the discrete bunch potential. For the analytic calculation'howeverl’

it would be much easier to work directly in the frequency domainI'noting that

Z(k) = 1/00 E.(z, k)e* dz, (1.7)

_E »

where k = w/v is the wave numberl'ly = ¢qv is the dc current and the time dependence
is assumed to be exp(jwt). This definition requires the field everywhere along the
beam axis or along the gap if the structure is a cavity type. It should be noted also
that the field integral in Eq. (1.7) is the effective voltagel'including the transit time
factorl'experienced by the charge traversing RF cavity.

Since the drive current in the frequency domain has a sinusoidal dependence on z
of the form

I(w,y, 21 k) = Lod(x)é(y)e™ ey, (1.8)
we can express Eq. (1.7) as

1
[ Io|?

Z(k) = /_O:O E . JdV. (1.9)

In this formI'coupling impedance used in the accelerator physics is equal to the input
impedance of the source which excites the waveguide or cavity.
It will be shown in the next section that Eq. (1.9) is more convenient for a certain

geometryl'especially for a hole problem.



1.3 Aperture Problem and Gluckstern’s Formal-
ism

Maintaining a high vacuum in a storage ring is essential for a useful beam lifetime
which is typically many hours. Since the residual gas must be pumped out of the

beam pipel'pumping holes are distributed around the ring for the passage of residual

gas. Although the arrangement of pumping holes is different in different acceleratorsl’
the impedance of even a single hole is not a well-known quantity.

Numerical calculation using computer codes for the wake potential is possible but

it will be time consuming since
1. the geometry describing a beam pipe with holes is three dimensionall’

2. a large amount of computer storage will be required because the computation

will need a fine mesh in order to resolve the 1 or 2 mm thickness of the hole-platel’

3. it is always difficult to obtain the impedance in the high frequency range because
errors in the Fourier transformation are amplified in the convolution defined in

Eq (1.5).

Finding an analytic expression for the impedance of a hole in a broad frequency range
is therefore highly desirable in the design of high intensity storage rings.

Among many different ways of calculating impedancel’ Gluckstern’s formalism
[10['11I'12] is particularly usefull'and is introduced in this section. Let us consider
two axially symmetric beam pipesI’one without a hole and the other with a hole
shown in Fig. 1.2. If we denote the field in the smooth beam pipe as E;I'H;I'which

is the source fieldI'and the field in the beam pipe with a hole as E;I'HyI'which is the



source field plus scattered field due to a holel'they satisfy Maxwell’s equations in the

form

V x ELQ = —jw,uHLg ,V X HLQ = jweHLz + J, (110)

where J = Ié(2)6(y)e™* e, is the complex current density and k = w,/eofip is the
free-space wave number. Assuming that the velocity of traveling charge is ultrarela-
tivistic (f = v/e ~ 1I'y = 1/3/1 — 2 > 1T'which is assumed throughout)['and using

a well-known result of the impedance due to the source field
Z:(k) = —constant x % (1.11)

we can construct
| Lo[*[Za(k) + Z7 (k)] = | Lo[*[Za(k) — Zi (k)] = — /[Ez I+ E7-JldV. (1.12)

Noting the identity V - (E} x Hy + E; x H}) = —(E; - J* + E7 - J)['we convert the

volume integral into the surface integrall'leading to
Io|? Za (k) = /n [y x H; + E % H,)dS, (1.13)

where we used the fact that Z;(k) vanishes in the ultrarelativistic limit. If we choose
S to be the inside surface of the beam pipel'n - Ef x Hy = 0'we have

Io|2 Za (k) :/ (n x Ey) - HT, (1.14)

hole

where n x E; is the tangential field inside the holel'a quantity unknown until we solve
the problem completely.
Determining the field inside hole has been an important subject of investigation

for a long time. Several hundred papers have been published on this subjectI’and



(@) (b)

Figure 1.2: (a) A charge traveling in the smooth beam pipel'(b) a charge traveling in
the beam pipe with a hole.

an excellent review paper was written by Bouwkamp in 1954 [4]. Among the large
amount of literature availableI'Schelkunoff’s Field Equivalence Theorems [26]]'Levine
and Schwinger’s variational formalism using dyadic Green’s function [21]I'and Rum-
sey’s Reaction Concept [23] are particularly useful for our problem. These works are

summarized in Chapter 2.

1.4 Goal and Scope of the Work

Obtaining an analytical estimate of longitudinal coupling impedance of a hole is the
main goal of this work. Since the exact solution is hard to obtainl'we try to find
an approximate solution based on a variational principle. This approximate solution
should be valid in a wide frequency range.

As mentioned in the previous sectionl'a hole cut in the surface imposes a funda-
mental problem in vector diffraction theory. Relevant theorems and formalism for our

impedance problem are summarized in Chapter 2. In Chapter 3I'the most important



in the dissertation'we apply diffraction theorems to a particularly simple geometryl’
namelyl'a hole in an infinitely flat screen. Although accelerator beam pipe is torus in
shape with circularlellipticall'or rectangular cross sectionl'we consider the beam pipe
with rectangular cross section because other shapes raise the question of curvature
effect of a hole which is not essential to our problem. Analytic results and comparison
with numerical estimates are presented in Chapter 4. Conclusions and suggestions

for a further investigation are presented in Chapter 5.



Chapter 2

Vector Diffraction Theory

2.1 Introduction

The diffraction problem deals with the interaction between waves of finite wavelengths
and obstacles. A geometric theory describing the diffraction pattern was developed
by Huygens and Fresenel whose idea was put forward in the mathematical form by
Kirchhoff. Kirchhoff’s scalar diffraction theory is based on the integral equation
whose solution is in general impossible to findI'and hence subject to the various
approximations for solutions. When Kirchhoff applied his formula to the problem of
diffraction by the black (or opaque) screen with an aperture in itI'he assumed that

[16]):

1. A field function (¢) and its normal derivative (%) on the screen vanish except

in the aperture.

2. The values of ¥ and % in the aperture are equal to the values of the incident

waves in the absence of any screen or obstacles.

It is these approximations that contain mathematical inconsistencies and physical

deficiencies and not the Kirchhoff integral equation itself [2].

10



Since Kirchhofl’s integral equation is based on the scalar Green’s functionl'it does
not satisfy Maxwell’s equations in general. A vector analog of Kirchhoft’s integral
equation was developed by Stratton and Chu [27] which requires not only the tan-
gential electric and magnetic fields but also the normal electric fields on the entire
boundary surface surrounding the region of interest where the fields are to be com-
puted. The choice of vector Green’s function is rather arbitrary. The proper choice
of Green’s function will remove the normal electric fields from the integral equation
[22].

Green’s functionl'which relates the vector fields and the vector sourcesl'should
be in general dyadic or tensor quantity. In particular’when we want to compute
the fields directly by solving vector wave equations for fields instead of resorting to
the use of vector potentiall'the dyadic Green’s function has a considerable advantage
over a vector Green’s function in simplifying the notation. Levine and Schwinger
[21] used the dyadic notation on the theory of electromagnetic wave diffraction by
an aperture in an infinite plane conducting screen. Employing variational principlesl’
they calculated the transmission coefficient with a great accuracy comparable to the
rigorous solution obtained by solving partial differential equations analytically. This
is the motivation for using the dyadic Green’s function throughout our work.

In Section 2.2T'we explain the field equivalence principle which is helpful in under-
standing the physics involved in the diffraction phenomena. The brief introduction
of dyadic Green’s function which will be used later is laid out in Sections 2.3 and
2.4. The field equivalence principle will emerge as a natural part of the theory of
dyadic Green’s function. In Section 2.5I'we introduce the Rumsey’s reaction concept

which not only simplifies the notation but also proves to be useful in deriving the

11



variational formula for various quantities of interest. In Section 2.6I'we calculate the
transmission coefficient of a plane wave incident on the infinite plane with an aperture

using all the concepts and formalisms laid out in the previous sections.

2.2 Field Equivalence Principle

Various field equivalence principles provide different ways of formulating a boundary-
value problem [9I'141'241'251'26]. As an examplel'consider a solution of Poisson’s
equation in electrostatic problems. The region V surrounded by the surface S con-
tains no charge. Applying Green’s theoreml'one can determine uniquely the potential
in the region V due to the charge distribution external to S by specifying a surface
charge and a dipole layer density on the surface S. This illustrates one form of equiva-
lence principlel'for we replaced the original volume source with the equivalent surface
sources on the mathematical boundary.

A simple application of the equivalence principle for the time-varying electro-
magnetic fields is illustrated in Fig. 2.1. The sources for an electromagnetic field are
contained in a volume V; bounded by a smooth closed surface S as shown in Fig. 2.1a.
Suppose we only need to evaluate the fields in the region V bounded by both the sur-
face S and the surface at infinity S.,. For this purposel'assume the original field in
V' and the null field in V; as shown in Fig. 2.1b. Since the fields change discontinu-
ously across S in Fig. 2.1bI'there must exist surface currents to satisty the boundary

conditions:

J=Hxn, J,=nxE,

where J and J,, denote the electric and magnetic currents respectivelyl'and n is the

unit vector outwardly normal from the region where the fields are to be calculated.

12



(This convention is used for the direction of unit normal vector throughout this work.)
The integrated effect of these surface currents will uniquely determine the field in the
region V. This is called Love’s field equivalence principle. Evidently this does not make
the problem any easier to solve since we do not know the equivalent surface currents
until the problem is solved. Since we know that the field can be uniquely determined
by the tangential components of E-field or H-field on the surface alone [28]I" we
may modify Love’s field equivalence principle such that it requires only magnetic
(tangential E) or electric currents (tangential H).

Since the field in the region Vj is zerol'we may place a perfect electric conduc-
tor over S without affecting the field in V;. Over this conducting surface we have
equivalent current source J and J,,. The tangential E-field reduces to zero on the
conductor surface which crosses the magnetic current sheetl'and the insertion of con-
ductor does not affect the field in the region V due to J,,. It can be shown also that
an electric current just in front of an electric conductor produces a null field [9]. The
field in the region V' is then uniquely determined by the magnetic surface current
(tangential E) adjacent to the perfect electric conductor whose surface coincides with
the S. In Green’s function techniquel'this is equivalent to finding Green’s function
to satisfy the boundary conditions for the perfect electric conductor. Similarlyl'it we
place the perfect magnetic conductor on ST'we only need the electric surface currents
(tangential H) to determine the field uniquely in the region V. This modification
to Love’s field equivalence principle is called Schelkunoff’s field equivalence principle

and is illustrated in Fig. 2.2.

13
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Figure 2.1: Illustration of Love’s field equivalence principle. (a) Original problem;

(b) equivalent to (a).
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Figure 2.2: TIllustration of Schelkunoff’s field equivalence principle. (a) magnetic
current over electric conductor; (b) electric current over magnetic conductor.
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2.3 Free-Space Dyadic Green’s Function

Maxwell’s equations in the phasor form are

VxE+jouH = -3, (2.1)
V xH-jwE = J, (2.2)
V-H = pu/p, (2.3)
V-E = g (2.4)

It is assumed that all quantities vary as ¢/“!. Quantities J,, and p,, are densities of
magnetic current and magnetic chargel'respectively. Currents and charges are related

by the equation of continuityl’

V- J+jwp = 0, (2.5)

V-J, +jwp, = 0. (2.6)
The vector wave equation for E is obtained by taking curl of curlE resulting in
VxVXE—-FE=—jwud -V xJ,, (2.7)
where k% = w?pe. In a similar fashion we find that H is a solution of
VxVxH-FH=—jwd, +V xJ. (2.8)

We can derive either Eq. (2.7) or (2.8) from the other using the substitutions E — HI
H—- -EI'J—-1J,I'J,, - —Jland € < p.
Both E and H fields satisfy the linear vector equation in the form
Lf =g. (2.9)

15



We first note thatl'in generall'the solution cannot be expressed in terms of a single

scalar Green’s functionl'asI'for examplel’

f(r) = /V G(rr')g(r')dV",

Such a relationship implies that the source g(r’) everywhere parallel to the = axis
generates field f(r) parallel to the same axis. This is true for the relationship be-
tween the current source and the magnetic vector potential but not for the fields. It
is therefore necessary to use nine scalar Green’s functions to express the three com-
ponents of f(r) in terms of three components of the source g(r’). One of such nine
scalar Green’s functionsI'G ., (r|r')'measures the x-component of the field at r due to
a unit y-directed source at r'.

Thus the equations for f(r) can be written as [6]
f(r) = /(Gl,ex g+ Gye, g+ G.e,-g)dV' = /G gdV', (2.10)
where G is the dyadic Green’s function defined as
G = G,e, + G,e, + G.e.. (2.11)

(In this workI'bold characters are used to denote vectors and bold characters with
a bar to denote dyadic quantities.) The G’s are the column vector of the dyadic

Green’s function GI'for examplelas
G, = Gue,+ Gpue, + Goe,. (2.12)

In the matrix notation['Eq. (2.10) may be rewritten as

dfy = ny ny Gyz dgy ) (2- 13)

16



or in the tensor notationl’
fi = /Gijg]‘dvl. (2.14)

Consider the vector wave equation for E in the free space excited by the electric
currentl’

VxVxE-FE=—jwul. (2.15)

The dyadic Green’s function of electric type is defined as a solution of
VxVxG.— kG =Lr-r), (2.16)
where I is the unit dyadic defined as
I=e,e,+ee, +e.e,. (2.17)

Subscript e of G, denotes the Green’s function of electric type. We do not impose
any boundary conditions on G, except that it should satisfy the radiation condition
at infinity.

Following Levine and Schwinger [21]['we transform Eq. (2.16) to the vector Helmholtz

wave equation form. A vector identity
VxVx=VV.-V?
can be used to obtain

(V24 )G (r) = —(T+ %vvwr — ). (2.18)

Since we know thatl'in free spacel the scalar Green’s function G(r|r’) obeys the

relation

(V2 + E)G(r|r') = =6(r — 1'), (2.19)

17



the corresponding dyadic Green’s function should be in the form

G (r]t') =T+ %VV)G. (2.20)

The scalar Green’s function satisfying the radiation condition is well known as

o—ikR
G(rlr') = G(R) = R (2.21)
where R = |R| = |r — 1’| is the distance between the source point r’ and the field
point r. Thus['the dyadic Green’s function is
o 1 —jkR
G.(rlr") = (I+ PVV) R (2.22)

The hierarchy of the above dyadic Green’s function becomes clear by constructing
an explicit coordinate-free form [8]. In order to do that we will use the following

relationships

VR = R (2.23)
N 1 _ A A
VR = L(I-RR), (2.24)

where R =r — 1’ and R = R/R.
Using the chain rule that if f(u) is a function of ul'and wu is a function of rl'we

have

d
Vf= —fVu.
du

With the aid of the above relations'we obtain

ve—ij . 1 e—ijf{
I - 2.25
— == (k) R (2.25)
and
e—IkR ik 9 _ R . | e IkR
= |- [Z= 4+ =] (I-3RR)-ERR . 2.2
P

18



Substituting Eq. (2.26) into Eq. (2.22)'we finally obtain

G.(r|r') = (T— RR)G(R) — L(I —3RR)G(R) —

Nz (I-3RR)G(R). (2.27)

The first termI'which varies as 1/Rl'is the radiation term which is purely transverse
to the direction R as the dyad I — RR projects any vector perpendicular to R. Thus
the radiation field far from the source is a plane wave. The second and third terms are

also familiar induction and electrostatic termsl'respectively. For an arbitrary current

distributionI'the electric field will be
E(r) = —jwp / G.(x|r') - I(e)dV". (2.28)
Similarly for H fields due to the magnetic currents satisfying
VxVxH-EFH=—jwd,, (2.29)
the dyadic Green’s function of magnetic type is defined as the solution of
VxVxG,—kG,=Ir-r1). (2.30)
For an arbitrary magnetic current distribution the magnetic field will be
H(r) = —jwe/ém(m') TV (2.31)

G,, is obviously equal to G.I'and we denote both as GyI'which is called the free-
space dyadic Green’s function. In general the dyadic Green’s functions of electric type
and magnetic type are different from each other when the explicit boundary conditions
are included in the definition of Green’s function. For examplelin the region bounded
by a perfectly conducting walll'the boundary conditions on the surface satisfied by

the Green’s function are such that
nxG.=0, nxVxG, =0, (2.32)
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which says that the tangential electric field on the electric conductor vanishes. Thus
G, +* G.,, in general.
From Eq. (2.27)'we see that the free-space dyadic Green’s function has symmet-

rical propertiesI’

Go(r|r') = GOT(I"|I'), Go(r|r’) = Go(r'|r), (2.33)

where superscript 1'denotes the transpose of a dyadic. The first identityl'often called
reciprocity relationl'is satisfied by all types of Green’s function but the second one is

special to the free-space case. These are useful because we can write

without worrying about ordering of the multiplicationl'i.e.' Gy commutes with an

arbitrary vector.

2.4 Dyadic Green’s Function and Field Equiva-
lence Principle

Consider the source in the region V; shown in Fig. 2.1a bounded by the surface 5. The
fields of physical interest are those contained within the regions devoid of charges and
currents. Such a region is denoted as Vin Fig. 2.1a bounded by S and the surface at
infinity S.,. The unit vector n is normal to S outward from the region V. Then the

electric field in V satisfies the source-free wave equationl’
VxVxE-FE=0. (2.35)
We define the dyadic Green’s function as a solution of

VxVxG-EG=Ir-1). (2.36)
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This Green’s function is defined in the unbounded spacel'V + Vi I'and it should satisty
the radiation condition. This is essentially the free-space dyadic Green’s function
previously denoted as Gy butI'since we will impose a boundary condition laterI'we
will leave it as G.

In order to relate the field in V with the surface integral over SI'we use the Green’s

second vector identity written as

/ dSn-[Bx (Vx A)— A x (V xB)] = / dV[A-V % (VxB)—B-V x (V x A)].
S+Seo v

(2.37)
Substituting A(r') = E(r') and B(r') = G(r'|r) - e['where e is an arbitrary constant

vector]'we obtain

/S-l—Soo dSn - [(G(r'[r) - e) x (V' x E(r')) — E(r') x (V' x G(r'|r) - )]

=/, dV'[E(r))- V' x V' x (G(r'|r) -e) — (G(r'|r) - e) - V' x V' x E(r')]. (2.38)

Using the relation V x E = —jwpH and noting that the surface integral vanishes on
S..I'we obtain

E(r) ifreV
otherwise

(2.39)

Y

jw/sds'(n « H)- G(r'|r) /SdS’(n ¥ E)- V' x G(r|r) = {

where we used Eq. (2.35) and Eq. (2.36) to evaluate the volume integral. Physical

interpretation of this will be made clearer by applying the relation [211'29]

V x Go(rlr') = [V x Go(r'|r)] (2.40)
to see that
E(r) = —jw/sé(m') (H x n)dS' — V x /Sé(ﬂr’) (n x E)dS’
— E(ductoJ=Hxn) +E (due to J,, =n x E) . (2.41)
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Thus we have proved Love’s field equivalence principle. A corresponding expression
for the magnetic field may be obtained by substituting A(r’) = H(r') and B(r') =

G(r'|r) - e into Eq. (2.37) and the result is

H(r) ifreV
otherwise

(2.42)

—jWG/gdS/(n x E)- G(r'|r) —/SdS'(n xH) - V' x G(r'|r) = {

which is equivalent to replacing E — HI'H — —ETl'and ¢ — € in Eq. (2.39).

It the surface S is a perfectly conducting walll'it will be convenient to distin-
guish electric and magnetic Green’s functions G, and G, which satisfy the boundary
conditions

nxG.=0, nxVxG,, =0. (2.43)

The expression for the electric field can be obtained by replacing G with G, in
Eq. (2.39)'then the first integral vanishes because of the boundary condition. Simi-
larly the magnetic field can be obtained by replacing G with G,, in Eq. (2.42)['then

the second integral vanishes. The resulting expressions are

E(r) = — / dS'(n x E) - V' % G.(r'|r), (2.44)
s
H(r) = —jwe / dS'(n x E) - G (r']1). (2.45)
s
Using the symmetrical relations Eq. (2.50) and Eq. (2.53) below['we rewrite the above
equations as
E(r) = -V x / dS'G,(x|r") - (n % E), (2.46)
s
H(r) = —jwe / dS'G,(z|r") - (n % E), (2.47)
s
which clearly show that the fields are due to the magnetic surface current. We have
derived a mathematical expression of the Schelkunoff’s field equivalence principle
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shown in Fig. 2.2a. The other one corresponding to Fig. 2.2b will also be verified by
interchanging the roles of G, and G,,.
Finallyl'we summarize the useful symmetrical relations of dyadic Green’s func-

tions. The proof is given in Ref. [211'29].

VxVxG-EG=I§r—-1), (2.48)
nxGi =0, nxVxGy=0, ronS, (2.49)
G(rlr) = [Gp)] (2.50)

V % Golrt') = [V x Go(rr)] (2.51)
Vx Gi(rlt) = [V < Ga(r)] (2.52)
Vx Galrlt) = [V < Ga(rlr)] (2.53)

2.5 Reaction Concept and Variational Formalism

Let E* and B* be the fields in volume V bounded by a closed surface S and excited
by volume distribution of electric current J* and magnetic current J2 . Similarly for
E’ and H® generated by J* and J® . ThenT'by the Lorentz reciprocity theoremI'we

get
j{(E“be—beH“)-dsz/(Eb-J“—Hb-J;—E“-JMH“-J;)dV (2.54)
S 14

It the current sources are finite and enclosed by the surface ST the left side of
Eq. (2.54) can be shown to vanish. One of the most useful forms of Lorentz reciprocity

theorem['in terms of Rumsey’s notation [23]I'may then be expressed as

<a,b>=<b,a>, (2.55)
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where < a, b > is called by Rumsey as reaction of the field a onto the current source
b and is defined as

<ab>= /V(E“ B LI £ O LRV (2.56)

Rumsey showed thatl'if the quantity of interest can be expressed as a reactionl'a

variational approximation with a suitable stationary property can be easily derived.

To see thatI'we let the correct reaction be < ¢,, ¢, > and the trial reaction be < a, b >.

Then it is shown that if < a,b > satisfies the condition
< Coy € >R a,b>=< ¢, b >=<a,c >, (2.57)

< a,b > 1s a variational approximation to < ¢,, ¢, > which is stationary with respect
to the correct values of ¢, and ¢;. In order to prove itI'following Harrington [14]'we

let

a4 = Cq+ Pa€a, b= cp+ prey (2.58)

where p is an arbitrary parameter and e represents an error. Then < a,b > becomes
<a,b>=< ¢y, 00 > Fpy < €4,6 > 4Py < Cq € > FPaPy < €4, €p > . (2.59)

Using Eq. (2.57)'we rewrite the above equation as
<a,b>=<cu, 00 > —papy < €q,€p > . (2.60)

Since the equation satisfies

0<ab> 0<a,b>
Ip, N Ip,

=0 asp, — 0, pp — 0, (2.61)

we have proved the stationary property of < a,b >.
Even if Eq. (2.57) leads us to a variational formulal'it does not enable us to set up

the proper functional equations to be solved when a trial field and associated source
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are expanded in series of functions with unknown coefficients. For that purpose we

will use the following expressionl’

<a,cp >< ¢4, 0>
< a,b>

< €y, 0 >N a, b >= , (2.62)

which is the same as Eq. (2.57). By equating these two expressionsI'we are ready to
solve for unknown coefficientsI'which is usually equivalent to solving linear algebraic
equations. In the final stagel'by substituting the calculated coefficients into Eq. (2.57)I'
we will have desired results which should be a good approximation to the correct

solution.

2.6 Application to Aperture Problem in an Infi-
nite Screen

We consider a surtace S which consists of an infinitely thinI'perfectly conducting plane
screen Sy of infinite extent and an aperture S; (or S, )['which is shown in Fig. 2.3.
If we denote the fields as Eo(r)['Ho(r) in the absence of an aperturel'we may write

the fields in each half-space as

&=
~—~
=
pa—
I
&=

o
~—~
=
pa—
_'_
&=
o
~—~
=
pa—
z
=
pa—
I
g
~—~
=
pa—
_'_
3
~—~
=
pa—
N
o

<
E(r) = Ey(r), H(r) = Hy(r), 250 (2.63)

where the subscripts 1 and 2 indicate the region z < 0 and z > Ol'respectivelyl’and

the fields are subject to the boundary condition
e.xE=0, e..H=0, ron 5. (2.64)
Eq and Hg can be decomposed as

EO _ Einc T :Eref7 HO _ Hinc T HTef7 (265)
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E(inc), H(inc)

s: R x

\
S2 \z
=

Figure 2.3: Diffracting aperture in a plane screen.

where the superscripts inc and ref indicate the incident and reflected waves from the
plane conducting screen which is not perforated. The boundary conditions on the
surface S are
Ere = el g™ = HIY | ron S, (2.66)
where the subscripts z and ¢ denote the z-component (normal component) and the
tangential component of fields['respectively.
The boundary conditions in the apertures can be expressed by the continuity of

fields in the aperture as

Elt = Egt, Hgt — Hlt = H()t, rin Sa, (267)
le = HQZ, EQZ — Elz = E027 rin Sa, (268)
which are satisfied if
1 » .
Hgt = _Hlt = §H0t = Hznc, rin Sa, (269)
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1 .
EQZ = _Elz = §EOZ =FE", rin Sa' (270)

z 2

Using Eq. (2.46) and Eq. (2.47)I'we express the fields in each half-space separated

by the screen in the integral form as

E(I') = VX fsa G:;L(I'h-/) . (ez % E)dsl }Z ;
H(I‘) = jwefsa G:;L(I'h'/) . (ez X E)dS/ Z 07 (2 1)

_ inc ref _ G~ . !
E(r) = E™ 4+ E V x [, G, (r]r') - (e. x E)dS } <0, (2.72)

H(r) = H™ +H — jwe [ G, (r|]t)) - (e. x E)dS’
where the superscripts + and — denote the region z > 0 and z < 0I'respectively.
Care must be taken with the sign of unit vector n. Following our convention that
the direction of n is outwardly normal from the region where the fields are to be
calculatedI'n = —e, for the region z > 0 and n = e, for the region z < 0.

The dyadic Green’s function for the half-space can be readily constructed using

the image principle and is shown to be [21129]
G:m(ﬂr’) = Go(r|r') F Go (r)r' — 2e.e, - 1v') - (I —2e.e,), 2,2 >0, (2.73)
where the upper and lower signs are employed for @: and G;Frespectivelyfand
G (rt) =G (r—2e.e.-r,r' —2e.e, 1), 22 <O0. (2.74)

If Eq. (2.73) is multiplied from the right by the vector e. x E(r’) and the result

evaluated at z’ = 0l'it can be seen that
G/ (r]r') - [e- x E(r)] = 2Go(r]r") - [e. x E(r)]. (2.75)

ThusI'Eqs. (2.71) and (2.72) are rewritten in the form

E(r) = V x [5, Go(r|t)) - (2e. x E)dS’

H(I‘) — jwe fSa GO(I'|I'/) . (QeZ % E)dS’ z 2 07 (2.76)
E(r) = E™4+E —V x [; Go(r|r') - (2e. x E)dS’
H(r) = H"™ + H" — jwe fs. Go(r|r') - (2e, x E)dS’ <0 (2.77)
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Screen Screen No Screen

1
1
E,H E,H Zero Field E,H Zero Field E,H
1
1
1
1
T i} H
IJm—an i1 Jm=2nxE
B ] 1 : ]
1
1
1
n z n z n " z
-1 -1 4—:>
(a) (b) (©

Figure 2.4: (a) Original problem; (b) and (¢) Equivalent problem to (a) for the region
z > 0.

The physical steps hidden in the derivation can be visualized from the field equiva-
lence principle shown in Figs. 2.4 and 2.5 for the regions z > 0 and z < Ol'respectively.

It we know the tangential E-fields in the aperturel'we can calculate the fields ev-
erywhere using Eqs. (2.76) and (2.77). The desired integral equation for the tangential
E-field in the aperture can be written by noting the boundary conditions Eqs. (2.69)
and (2.70). In the plane of the aperturel'we have

e.-E™(r) = e.-Vx [y Go(r[r))(2e. x E)dS’
e. x H™(r) = jwee. x [q Go(r|r))- (2e. x E)dS’

}rFr’ in S,. (2.78)

In generall'it is difficult if not impossible to solve this integral equation. Fortu-
natelyl'most of the physically interesting quantities such as the transmission coefficient
do not require detailed knowledge of the field around the obstacle. BesidesI'such a
quantity is expressed in an integral form which is amenable to an approximation. We
take the calculation of the transmission coefficient through a circular aperture as an

example of using variational formalism to obtain the approximate solution.

Consider a linearly polarized plane wave normally incident on an aperture in a
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Screen Screen No Screen

1
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> — : B e
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Figure 2.5: (a) Original problem; (b) and (¢) Equivalent problem to (a) for the region
z < 0.

plane screen. The transmission coefficient is defined as

_ Refg,ExH*-e.dS
" Re[g, Ee x Hiner e dS

(2.79)

which is the ratio of the transmitted power through an aperture to the power incident
on the aperture. Re denotes the real part of the complex quantity. Let the incident

wave be specified by
ZOHinc =e, e—jkz7 Einc —e, e—jkz7 (280)

where Zy = {/p0/¢€o is the intrinsic impedance of free spacel'equal to 377 €.
Since e, x H is real in the z = 0 planel'we may express the numerator of Eq. (2.79)I"

representing the transmitted powerl'as

P,=—Re | J, -HdS=Re<c,c>, (2.81)

Sa
where J,, = n xE = E x e, is the equivalent magnetic surface current in the aperture

and < ¢,c¢ > is the Rumsey’s notation for the self-reaction of the correct magnetic

29



current radiating in the presence of an electric conducting screen. We approximate

< ¢,¢ > by < a,a > with the constraint given by Eq. (2.57) such that
<ecc>r< a0 >=<ca>=<a,c>. (2.82)

The meaning of < ¢, a > is restated as the reaction of the correct field H on the trial
current J¢ . The constraint condition is met for our problem because n x H® = n x H"*
in the aperture. A variational formula for < ¢, ¢ >I'which is stationary with respect

to the correct magnetic current JS I'may be written as

. 2
2 [ Him . 32 dS
ceesmseaxt (s ) (2.8
<a,a> Js, H® - 2. dS

where we must emphasize that H® is the field due to the assumed current J¢. .

Thus the variational solution of the transmission coeflicient is

= (fs, H™ - 32,d5)"

T =
ZoA [ He-JudS

(2.84)

where P, = ZyA represents the incident power on the aperture of area A.
As a choice of trial fieldsI'Meixner has shown thatl'at the rim of an aperturel'the
tangential component of the electric field vanishes as R'/? and the normal component

~1/2 swhere R measures the distance from the field point to the edge.

increases as R
Bouwkamp has obtained the low-frequency exact solution for the normal incidence

on the circular hole of radius a. According to himI’

2@2 _ p2
e, E(p,¢) = (a2 = )i " ¢,
es E(p,¢) = —2(a® —p*)*sino,

in the hole. Here the origin of the polar coordinate system is at the center of the
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circular hole. Thus we may choose the trial field in the aperture in the form
€, E(p, ¢) = ( Z
- 0

es-E(p,¢) = (1-73) 1/226

@Ib

" cos ¢,

EQP*—‘

o N

" sin @,

@Ib

(2.85)

(2.86)

where a, and b, are unknown coefficients to be determined. Huangl' KodisI'and

Levine [15] have used this trial field to calculate the transmission coefficient and have

shown that the agreement between the calculation and measurement is excellent.

As an example of calculational procedurel’we adopt here a simpler form of the

original trial function used by Levine and Schwinger [21]. With the incident field

specified in Eq. (2.80)'we may assume a one-component trial field as

0 2 n—1/2

nxEB =e,Y a,(l - %) = e,6(p).

1

Substituting this into Eq. (2.84) and using the relation

H(r)" = —ije/sa Go(rlr') - [n x E*(r")] dS",

we obtain
T = ! Rel
T ZuA
R (Js, dlp)ds)

ZoA  jwe fg, fs, #(p)(Gaw + Gy )o(p')dSdS"

2\ n—1/2 2
p 2ra
Bn:/ -2 s =
a( az) n+1

If we denote

and

m—1/2 p/2 n—1/2
C,., = //( ) (G + Gy) (1—¥) dSds’

- 7’LT)’L7

31

(2.87)

(2.88)

(2.89)
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we may rewrite Eq. (2.89) as

(jwe)l Z Uy Oy = (Z an n)z. (2.92)

m,n=1

The procedure for determining unknown coefficients a,, is to differentiate I with re-

spect to each coeflicient a, and set 91 /da, = 0. This leads to

(el Y Comitn, = B (; amBm) . (2.93)

But by definition I = Y, a,B,'so that we have a set of linear algebraic equations

for a,,I'
o0 Bn
Y Comt, = —=. (2.94)
= Jwe
Once a,, 1s determinedI'the transmission coeflicient will be obtained from
™) ReZan s (2.95)

n=1

where N denotes the order of approximation and Re denotes the real part.
As an examplel'we will work out the first-order approximation. For N = 1I'a; is
simply jwea; = By/Chq. Levine and Schwinger [21] have shown that the coefficients

Cnn can be expressed as

T2\ 4 1 1 ,
Con = 5 (%) a’l’ (m + 5) r (n + 5) [(m +n—3)Fu(ka) — kaF,  (ka)],

(2.96)

where a is the radius of a circular hole and the prime denotes differentiation with

respect to the argument. The function F,,,(«) has been considered in Ref.[191'20]

and its explicit expression is given there for m, n = 1, 2. Thenl'with Eq. (2.95)FT(1)

becomes

8 1

7O — _ = Lol 2.
or " mFH(ka)—l—kaFl’l(ka)7 (2:97)
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which is exactly the same as Eq. (7.16) in Ref. [21] except for the sign because
we have used ¢/“! instead of ¢! in Ref. [21]. We also point out the differences
between Levine and Schwinger’s work and ours in deriving Eq. (2.97). FirstI'we used
Rumsey’s reaction concept to derive the variational formula. Second['we used M.K.S.
units instead of cgs units. Because of these differencesI'the intermediate results in
deriving Eq. (2.97) look different but the final results are of the same form.

The transmission coefficients obtained from the various theoriesI’which are ex-

panded in powers of kal'are:

1. Small hole approximation (due to Bethe [5])

64

_ 4
T= 277T2(ka) )

(2.98)

2. First- and second-order approximations by the variational method using Eq. (2.87)

as the trial fields (due to Levine and Schwinger [21])

64 27

1) — 44

T 27%2(@) [ + 5(ka) +0.72955(ka)* + ] (2.99)
64 27

2 _ 44

T 277T2(k a)t [1+ 5(ka) + 0.74155(ka)” + ] (2.100)

3. Zeroth-order approximation by the variational method using Eqs. (2.85) and
(2.86) as the trial fields (due to Levine and Schwinger [21])

64

T0) —
2Tm?

(ka)* |1 + 5(ka) +0.4079(ka)* + - - . (2.101)

4. First-order approximation by the variational method using Eqgs. (2.85) and
(2.86) as the trial fields (due to HuangI'KodisI'and Levine [15])

64
272

T —

~(ka)' |1 + 5(ka) +0.3968(ka)* +---| . (2.102)
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5. Exact solution (due to Bouwkamp [3])

64 22
ka)* |1 + ==(ka)? +0.3979(ka)* + ---| . 2.103
o (ha)t |14+ S (ka)? +0.3979(ka)* + (2.103)

T =

(Original work of Bouwkamp is not available to us but the above result is cited

in Ref. [15'21].)

We note that Bethe’s result is accurate only at low frequenciesI'namely ka < 1.
The variational method using one of the simplest trial fields shows a good agreement
with the exact resultI'even when such a trial field does not incorporate the proper
two-component tangential electric fields in the aperture. Inclusion of two-component
effects raises the accuracy up to the relative order (ka)? even in zeroth-order ap-
proximation as shown in Eq. (2.101). This demonstrates the importance of choosing

correct trial fields.
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Chapter 3

Longitudinal Impedance of a Hole
in an Infinite Screen

3.1 Introduction

In this chapter'we evaluate the longitudinal impedance of a hole in a thin['perfectly
conducting plane screen. We have already discussed a similar problem of calculating
the transmission coefficient in Chapter 2. Since the analytical technique presented in
Chapter 2 is general enough to deal with the calculation of a variety of interesting
quantitiesl'it is not necessary to introduce new formalisms for our impedance calcu-
lation. After alll'calculating the impedance or the transmission coefficient deals with
the same diffraction phenomenon. Only the definitions which involve the integration
of fields are different.

In Section 3.2I'we will estimate the impedance in the low frequency range using
Bethe’s [5] small hole approximation. If we can expand in powers of frequencyl'the
low frequency solution will represent the first term in the series.

In Section 3.3'we will obtain the variational solution of impedance with different

trial fieldsI'showing the main result of this chapter.
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A

— I

V=C

Figure 3.1: Infinite flat screen with a hole.

3.2 Low Frequency Solution

The geometry of our problem is shown in Fig. 3.1 where a charge is moving in the
z-direction with velocity close to the speed of light. The distance between the plane
screen and the beam path is b and the origin of the coordinate is at the center of the
hole with radius d. The local cylindrical coordinate system (p,8,y) is also shown.
Denoting E;I'H; as the fields without the hole and E;I'H, as the fields with the
holel'we can express the longitudinal coupling impedance defined by Eq. (1.14) as

o[22 (k) :/ (n x Ey) - HdS, (3.1)

hole

where J,, = n X E; is the magnetic current induced in the holel'which is not known
until we solve the problem. In the low frequency approximationl’howeverl'we may
use Bethe’s solution for n x E as follows.

Assuming a small holeI'namely kd = 27d/\ < 1I'Bethe obtained the solution for
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the magnetic current in the hole [5]

) 2k
HXE:_WWePXEO‘I‘] - V& —p* Ho =Jo g + I m, (3.2)

where Ey and Hy are the field evaluated at the center of the hole in the absence of
the holel'and J,,, g and J,,, g denote the magnetic current induced in the hole due to
the incident electric and magnetic fieldI'respectively.

The magnetic field from the unit source current can be obtained using the image

principlel'resulting in

H = 1oy (y —b) B (y +b) =ik

T et (y— b 2t (y +0)? ’
Iy x x ik

H = =2 _ ks
27 l:ﬂ +(y+0)? 2?4 (y— 5)2] ‘

(3.3)

where the coordinate system in Fig. 3.1 is used. In the plane of the holel'it becomes

Iy b

w4 b2

H, = e * . H, =0. (3.4)

Assuming a small hole in which the field is uniform but the phase is varyingl'we may

rewrite the source field as

H, = Hy — jkzHo + O(k*), where Hy = —%egg. (3.5)
ThenI'the longitudinal coupling impedance becomes
\I]? Zg (k) = . Jom - HidS = j%éﬂk, (3.6)
|| Zs(k) = . Jor-HidS = —jméﬂk, (3.7)
P20 = Zu(k) + Zuik) = /225, 3:5)

3
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which results in Z(k) = (2Zod”/37*b*)k. We note that Zy (k) due to J,, g is a factor
of two larger than Z(k)I'and Zg(k) due to J,, g is the negative of Z(k). We also
observe that the current Iy does not appear in the final expression of impedance.
Thus we keep Iy in the expression only for bookkeeping purposesl'setting Io = 1 in
the final formula. By doing sol'we may simplify the expression in the later sections.

Although Eq. (3.8) is valid only for low frequenciesl'it is quite general. If we
consider a charge traveling inside a cylindrical beam pipe of radius b with a hole of

radius dI'the longitudinal coupling impedance becomeslI'with Hy = 2% in Eq. (3.8)I

 Zod?

which is exactly the same as Kurennoy’s [18] and Gluckstern’s results [11].
Thusl'in low frequency approximationl'we can easily obtain the longitudinal cou-
pling impedance once we know the source field which is specific to the geometry

surrounding a traveling charge.

3.3 Variational Solutions

In this section'we try to calculate the longitudinal coupling impedance of a hole in
an infinite screen using a variational method. We begin by defining an “impedance
functional” which is stationary with respect to the unknown quantity (magnetic cur-
rent density in the hole). Such a functional may not be the same as the quantity
of interestI'the longitudinal coupling impedancel'but it will be shown later that the
two quantities are related. ThusI'from the impedance functionall'we can obtain the
expression for the longitudinal coupling impedance. Various trial fields are used to

evaluate the impedance functional and the results are presented.
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3.3.1 Derivation of Impedance Functional

The geometry of the problem is shown in Fig. 3.1. If we denote the fields without
the hole in the screen as E; and H;I'and the fields with the hole in the screen as E,

and H,oI'E; 5 and Hj 5 satisfy Maxwell’s equations in the form
V x ELQ = —jw,uHLz, V x HLQ = jCUEELQ + J, (310)

where J = e,6(y + d)é(x)e™7** is the current density of the driving beam with unit
amplitude and k£ = w,/€yuq is the free-space wave number.

Expanding the quantity V - (E; x Hy — Ey x Hy)['we get the identity
V-(EixHy—Ey; xHy) =7 (E; — Ey). (3.11)
Taking the integral of both sidesI'we have
/(E1 « Hy — Ey x Hy) - ndS = /J (Ey — E})dV. (3.12)
We define the impedance functional Z as
Z= —/J-(EQ—El)dV. (3.13)

In the above definitionl'as we subtracted the contribution from the source fieldI'the en-
tire contribution is from the scattered field which satisfies the homogeneous Maxwell’s
equations. We note that if the electric field is reall'the longitudinal impedance is the
complex conjugate of the impedance functionall'Z (k) = Z*(k).

If the integrating surface is chosen to coincide with the plane of the screen where

E; satisfies the boundary condition n x E; = 0I'Z reduces to
Z= /H1 (1 x Ey)dS, (3.14)
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which we want to evaluate. We also recall that the longitudinal impedance is
Z(k) = /H; (1 x Ey)dS. (3.15)

For the sake of clarityl'we change the notation as

E1 — :Ei7 H1 — Hi7
E,=E +E°, H,=H+H",

where superscript ¢ denotes the “incident” or “source” field of the driving beam
without the holel'and superscript s denotes the “scattered” field from the hole. The
hole is acting as “scattering object” or “obstacle”; otherwise the media are empty

space surrounded or separated by the perfectly conducting material.

In the new notationI'we may write Z as
zZ= /H - (n x E*)dS, (3.16)
where n x E* = 0 in the aperture is used. With J,, = n x E*T'Z becomes
Z= /Hi-des. (3.17)

ButI'by definition'Z = — [ J-E*dS so that this satisfies Lorentz’s reciprocity theorem.
Using Rumsey’s notationl' we may express Z in a compact forml'Z = — < 7,5 >
which is often called the “echo” of a scattering objectI’an important quantity in the
development of radar technology. We can state that our impedance functional is the
mutual reaction between the source current and the magnetic current induced in the
aperture. Using known boundary conditions which the tangential magnetic field must

satisfy in the aperturel H! = —2HI'we rewrite
Z:—Q/HS-deS:2<c,c>, (3.18)
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where < ¢, ¢ > stands for the self-reaction of the “correct” magnetic current induced
in the aperture by the source.

Now we can write the variational expression for Z as

<eca 2 B __1[fSaHi-(n X E“)dS]Z

Z:2<c,c>%2<a7a>— 3 o B (0 x B (3.19)
Using dyadic Green’s function'we calculate H* from
H(r) = —2jwe /S Golrle') - [n < B ()]s, (3.20)
ThusI'Eq. (3.19) may be rewritten as
| [Js, B - (n x E*)ds]’ o)

T djwe fo fo 0 x Bo(r)]- Go(r|r') - [n x E4(r')]dSdS”
which is a homogeneous equation in the sense that the result does not depend on the
amplitude of the assumed electric field E®. In fact this is a general expression for
the impedance functional of an aperture in a conducting plane as long as the plane
is the symmetry plane separating two regionsI'namelyl’an infinite plane or coupled
waveguide structure. Details of the calculation depend on the shape of the aperture
and the assumed tangential electric field in the aperture. In the next sectionl'we

present a closed form solution for a hole in an infinite screen.

3.3.2 The First Variational Solution

In the previous sectionI'we derived the impedance functional Z which is stationary
with respect to the correct tangential electric field in the aperture. In order to evaluate
itI'we need to assume a trial function for E®.

We assume a one-component trial field based on Bethe’s solution [5] as

n=0o 2
nxE=e, ¥ a,(l- %)n—i = e.d(p), (3.22)
n=1
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where we dropped the superscript a. We note that the unknown coefficient a,, is

dependent on the frequency. The impedance functional is

1 [fs, Hip.0)é(p)dsS]”
 djwe s, [, 6(p)Gaslp, 0", 0)6(p')dSdS"

We transform the equation into a more symmetrical form utilizing the symmetry

(3.23)

of a circle. For instancel'if the beam is moving in the x directionl'the expression for Z
will be in the same functional form as Eq. (3.23) except that the subscript @ denoting

the x component of the field or dyadic Green’s function is replaced by z. Thusl'we

have ,
o s, Hi(p,0)6(p)dS] 3.24)
2jwe Js, Js, 8(p) (Gra + Gaz) $(p)dSdS" '
which is later shown to be much simpler to evaluate.
It we define .
2\ "3
i p
B, = /Hx(p,e) (1 - ﬁ) ds (3.25)
and

m—l

2

5 2\ n—1/2
_ _ _r_ =
C,. = / / (1 d2) (Gaw + G-2) (1 d2) dSdS" = C,  (3.26)

Z becomes

1 (Zn:l Clan)2

2jw6 Zn,mzl amancmn

, (3.27)

or

(2jw)Z S 1y Co = (Zn:aan)z. (3.28)

n,m=1

Differentiation with respect to a,'and utilization of the stationary property of ZI'
namely 02 /0a, = 0lyield

(2jwe) > anCn = B, (3.29)

42



where we used the identity Z = 3", a,B,,. Once the frequency-dependent coefficient
a, is determined by solving the linear algebraic equationl' Eq. (3.29)I' the desired

impedance functional can be obtained from
N
ZM =%N"a,B,, (3.30)
n=1

where N is the order of approximation. Since the longitudinal coupling impedance is
defined by Z(k) = =™_, a, B} and B,, = B;T'which will be shown laterI'the impedance
functional is the same as the longitudinal coupling impedance.

The lowest order approximation'N = 1I'results in

By
@ = —
! 2jw60117
Zo [ B2
zW = —ji (0—111) (3.31)

where k = w,/eofig 1s the free-space wave number and Zy = 377 ().
With N=2I"we find

ar = —J)5

2k | C11Cy — Cf,
Zoy [ B2C1 — B1C12]
2k | CiCyp—CE |7
Ly 3;12 n (ByChy — 31012)2]
2k _011 011(011022 - 0122)
- j@ (B2Ci1 — B1Ci2)?

2k C11(C11Co — CFy)

.ZO -BICZZ - BZCIZ]

(3.32)

which shows the successive approximation as the order of approximation is increased.

We turn our attention to finding an explicit expression of the quantities B,, and
Cn in order to complete the approximate calculation of the impedance. Since the
most convenient coordinate system to describe the hole in the flat plane is the cylin-

drical coordinate systemI'we express the component of dyadic Green’s function in
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that coordinate system and then carry out the necessary integration to obtain B,
and C,,.,.

The free-space Green’s function satistying the wave equation
(V2 + E)G(r, ') = =8(r — 1)

is G = ¢7*E [4x RT'where R = |r — r’|. Its integral representation is
o—ikR

47TR

— /dqxe ]qu z! /dqze ]qzz 2! / qy —qul/ Z/) 7 (333)
8 4+ +q; — K

where the Cartesian coordinate system is defined in Fig. 3.1. With the help of a

G =

contour which will result in the outgoing wave satisfying the radiation condition at

infinityl'Eq. (3.33) becomes
[qm(x ) +qz(2—2" )4/ k> =2 —aZ|y—y |]
dqxdqz
=5/ T

For the convergence of the above integrall'we require that Imy/k? — ¢2 — ¢? is negative

which also implies I'm+/q2 + ¢ — k? positive.

We are now ready to evaluate the individual component of dyadic Green’s function.

(3.34)

Specificallyl'we will work out G, and G, .

1 02
. - (1 s __) G
z
1 e_j |:QE(73 z! +qz z—z \/ k2—q$—qz|y Yy |:| 2
z \/qz+qz i

Introducing a set of angle variablesl’

q = q.€. + Gr€y = (gcosu)e, + (gsinu)e,,
R = (-2, + (x—2a')e, = (Rcosv)e, + (Rsinv)e,,
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we obtaln
G.. = L ﬂe—iv k2 =a?ly—y'| /27T p—iaRcos(v—u) .,
872 Jo q? — k2 0

o 2 -
_ L ﬂ T eIV = ly=y'| /2 eJaRcos(v=u) (2.
872 Jo /q? — k? \ k? 0

Using an integral formula

. I Hra
/ eEizcost o 2v g g M]y(z% (3.36)
0 (Z/Q)U
we find
GZZ _ i 0 ﬂ Jo(qR) _ i (JO(qR) — COS QUJQ(QR)) e_j\/ k2—q2|y—y’|.
4 Jo  q? — k? 2k?

(3.37)
A similar expression for G, is

2

[JO(qR) - ;? (Jo(qR) + cos 2v]2(qR))] eIV E = ly=y'|

L feo  qdq

Gamc:_ T
dr Jo  \q? — k?

(3.38)
On the aperture plane y = 3y’ = 0I'the desired expression for G, + G, takes a
simpler form[I’
1 02 1 0?
Gt = |(14 ) + (14 7) | ©

- ﬁ /ooo qdq [(f LU %(qz N kz)l/z] Joleh).  (3.39)

Using a Bessel function addition theoremI’

JolqR) = Jo (q(p*+ p"* = 2pp' cos(0 — 0/))'/?)

= >_(2—=boa)Ju(ap)Julgp’) cosn(0 — 0'),

0
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where 6o, = 1 if n =0 and 6y, = 0 if n # 0I'we further transform G, + G, as

Gxac + Gzz = - Z 50n COS n(e -0 )
~ 2 Loy 241/2 /
/ adq |(q* = k)72 = (g = K)'"2| Ju(ap) Lulap).

Substituting the above expression into Eq. (3.26)'we have
oo 1
Cmn:ﬂ—/ |:(q2—k) ( 2_k2)1/2:|
0

-Adp(l—fg)m_ qup/‘ (1—-—> _%ﬂmwﬁdﬂ (3.40)

which is to be evaluated.

With the change of variable p = dsin pl'the first integral in Eq. (3.40) becomes

d 2\ M3 z
/0 p(l—s—z) Jo(gp)dp = d2/0 Jo(gdsin ) sin ¢ cos*™ pdp

2" (m + )

— P
(qd)™*2

J,e1(gd). (3.41)

wherel'in deriving the final resultI'we used Sonine’s first finite integral formula'l’
3 2" 1
/ J(zsin 0) sin”t! 0 cos® T 0dh = #*LH—V—H(Z) (3.42)
0 zv
which is valid when both Re(u) and Re(v) exceed -1.
Substituting the above intermediate result into Eq. (3.40) and introducing a new
variable v = ¢/kI'we rewrite C,,, as

T2\ 1 1
Con = () @ () (0 3) (3.43)

/Oo (02 = )72 — (0 = )V 0T (o), 1 (kdo)do.
0 2 2

1See reference [30], p. 373.
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If we define F,,,,(«) as
Frn() = /0 T = )RS (o), (av)d, (3.44)
1t can be shown that

Con =12 (%) " T (m + %) r (n + %) (m + 1 — 3)Fpn(kd) — kdF"(kd)],

(3.45)

where the prime stands for differentiation with respect to the argument. With the

substitution of the above into Eq. (3.31)['we obtain

. Zo
g

By

zM :
Fiy(kd) + kdF}, (kd)

(kd) (3.46)

In order to evaluate the function F,,,(a)l'we divide the integration range into two

partsl’

Frn(a) = Ron(a) + jIn(a), (3.47)

where

L 1
2 2

1
Ln(@) = /(l—vz)l/zv_(m"'”)Jm_l_ (av)J,  1(av)dv,
0

Royn(a) = /1°°(U2_1)1/2v—<m+n>Jm+%(av)Jn+%(av)dv. (3.48)

For the first few values of m and nl'Levine and Schwinger [19] found

1 1 g2 1 e Syt
In(a) = &= 4 " 5(2a) /0 So(t)dt——/o 10 .

27 dra  8a? 1603 e t
1 1 2a 1 1

where SoI'S; and Jyl'J; denote the zeroth- and first-order Struve and Bessel func-

tionsI'respectively. The similarity between the two functions may be illustrated by
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comparing the integral representation of the two functionsI’

S.(z) = #;))1:1(15) /01(1 — tz)”_% sin ztdt,

22
F(V_I_—%)F(%)/O (1 —t%)""2 cos ztdt.

We now need to calculate B,, in order to obtain the complete expression for the

impedance. In the plane of the holel'y=0I'the source fields become

Lo b

H,=——
7 x? 4 b2

e H, =0. (3.50)

Thus!’

B, = /H(E % n)ds,

b p2 n—3 e—jkz
= —— 1-—= —dS. 0l
e e

T JS,

Assuming that the source current is far from the holel'i.e.I'z /b << 1'and assuming

that the field is static'B,, becomes

2 d? B 2d?
(2n +1)b

n — 0 — —

(2n+1)
In fact this is the approximation on which Bethe’s small hole theory is based. Laterl’
we will factor this quantity out of a whole expression leaving the effect of finite size
of the hole and the effect of phase variation along the hole in the compact form. We
will call this a form factor.
For general casesl'introducing the change of the variables z = pcosf and =z =
psin @ and denoting w = p/bl'we find from Eq. (3.51)

d 2 n—;— P —jkbw cos @
(1—’)—) pdp [ —————db. (3.52)

anzﬂ/ :
0 d? 0o w?sin®f + 1

0
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We integrate the second term to obtain

T e—jkbwcos€ o] ) T - . )
—de — _1 m m/ —J W Cos M m ada
/o w?sin?0 + 1 mZ::o( )" 0 ¢ S
= )™ T 1 I'{ =) J,.(kp).
ﬂ;( ) G <m+ 2) (2) (kp)

Substituting the above into Eq. (3.52) and using

d 2 ”—% z

/ (1 - %) " (kp)dp = d"T / I (kdsin 0) cos®™ 0 sin™*' 0db
0 0

22 (n + %) 7

m+2

kd),

we may rewrite B, as

2 d? d
B, = Hy FF, (=, kd), )
o1 Mo (5 kd) (3.53)

e k) = g@n—l—l)!!- (3.54)

IR O R

b

where F Fn(%, kd) denotes “form factor” mentioned before. We can verify that
d d
FFR(Z,kd) ~ 1 as kd — 0 and 7 0,

FFR(%,ka) ~ (kd)™""! as kd — oo and % < 1.

The series in the form factor is uniformly convergent in the whole range of kd if
d/b < 1. The fast convergence of series can be seen in Fig. 3.2 which shows that even
the first term alone is a very good approximation. The first term contribution arises
from the phase variation along the hole with the source current being far from the

hole. The amplitude of the source field is constant in the hole and is equal to the
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value at the center of the hole. We may approximate the form factor as

J, +§(kd)

FE,(kd) ~ g(Qn Fnl

W. (3.55)

We now express ZW) in a form which is convenient for numerical evaluationl’

470d* H? FF?
2 = j == (kd) pTINTIE
9 Fyy(kd) + kdF], (kd)

(3.56)

Numerical values of Z() can be obtained by substituting Egs. (3.49) and (3.53) into
Eq. (3.56). Since all the functions used in the expression are tabulated in standard
reference materialsl'it is easy to do; the result is shown in Fig. 3.3.

From the figurel'we observe that the resonance frequency k. occurs at kd = 1.6
where I'm Z(k) is equal to zero by definition. Since all the electromagnetic power
is dissipated at the resonancel’ Re Z(k) must have a maximum value there. But the
figure shows that the maximum of Re Z(k) occurs at kd = 1.3 which contradicts
physical argument. Such an unphysical phenomenon may be corrected if we include
the tangential field due to the incident electric field in Bethe’s solution in our trial
fields.

In order to investigate the impedance in the low frequency rangel we use the

expansions [19]

7 ( ) 2a° 4ad 4 16a7
1 2Tt 6757 | 551257 ’
1 o ot
finte) = 5=yt

We may write the impedance functional in a form appropriate to small values of kd:

3270d* H? 22

Re2W = SCS0 ()t (14 (k) =), (3.57)
4 Zod? HE 2

Izt = SR () <1+g(kd)2—---). (3.58)
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If we compare these with the low frequency resultI'namely Z(k) = j(2Zod* H3/3) kI
we find that the result from the variational method is a factor of two larger than the
low frequency result. This may be explained again by the fact that we excluded the
tangential field in the hole due to the electric field in our trial fields.

Since the impedance shown in Fig. 3.3 is similar to the impedance of a parallel
RLC-resonator circuitl'it would be useful if we described our impedance functional in

terms of circuit parameters. The impedance of a broadband RLC-resonator circuit is

R
1+iQ (s -%)

where () is the quality factor and w, is the resonant frequency. In the limit of low

Zp(w) = (3.59)

frequencyl’
Zp(w) ~ jJR(w/w,)/Q. (3.60)
The quality factor @) is defined by

Wy

Q= AL (3.61)
where |Z;(w)| at the frequency w = w, + Aw is 0.707 of its maximum value.
From the above definition'we find that
. L.6c ~ ~ 2 112
w20 QLS. R 3SZd . (3.62)

The second-order variational solution of impedance Z() can be written as

AZyd*Hp
S0 (k)

j
(Foo — kdF,)FF2 — =L [(Fyy + kdFY,)F FE — 10F, F L FFY)
(£11 + deﬁ)(Fzz kdlF3,) + (kdFy,)?

z(2)

.(3.63)

Numerical values of Z(?) are shown in Fig. 3.4. The same comments as in Fig. 3.3

apply here also.
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In conclusionl'we have derived the formula for the coupling impedance of a hole
in an infinite screen based on a variational method. Our results show that the hole is
acting like a broadband resonator circuit and our formulas are suitable for determining
the circuit parameters which are of practical use. Howeverl'in using one type of
trial fieldI'it is shown that the resulting impedance exhibits unphysical behavior.
Such a deficiency of the method is not removed by simply going to the higher order
approximation. We therefore believe thatl'in order to obtain physically consistent
resultsI'we should include another type of trial field['namely the field inside the hole
due to the electric field which appeared in Bethe’s low frequency solution. This is

carried out in the next section.

52



1.0 |
L T~ One Term Approximation
o= /
% o = \\‘/ Converged Solution
= oo :
S o.a L / d/b=1.0
©-Z - Two Term
L Approximation
.0 [
1 1 1 1 1 1 1
1 =2 3 < S S -
kd
e One Term Approximation
.8
= Converged Solution
:?) o.s |
= L
= oal d/b=0.5
o.z2 | Two Term
| Approximation
.0 |
1 1 1 1 1 1 1
1 p=d 3 < 5 S -
kd
T
1.0 One Term Approximation
o.3
= r Converged Solution
i o.e |-
=
= L
R d/b=0.1
| Two Term
-2 - Approximation
.0 |
1 1 1 1 1 1 1

Figure 3.2: Form factor as functions of kd.
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3.3.3 The Second Variational Solution

In order to eliminate the unphysical behavior of the longitudinal coupling impedance

found in the previous sectionl'we include the tangential field in the hole due to the

incident electric field in our variational calculation. An appropriate two-component

trial field in the hole based on Bethe’s solution is taken to be

(p/d)

nx E=an/1 — (p/d)? e, + by——LLY
1—(p/d)?

Since the impedance functional Z(k) is

- ] [Js, H - (n x E)ds|’
djwe fo fs. [0 x E(r)] - Go(r[r') - [n x E(r)]dSdS"

we may write the numerator as
a b 2
(CllBl + blBl) 5
and the denominator as
djwe [adC3 + arb Off + B3]
where

B = [ Hp. 001 = (p/d)as,

b i (p/d)
Bl = [ Ml )t

2T

d d 2
Coe = /,/1— d2d/ 1— ’d2’d’/ a0 [ ap
1 ; (p/)ppo (p/)ppo ;

(3.64)

(3.65)

(3.66)

(3.67)

[sin @ sin §'G,,r + sin 0 cos 8'G g1 + cos O sin §' Gy, + cos 0 cos ' Ggr]
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et = [ oldrads [ r_ﬂégzj_ ay

2T 2T
/ do [ do' [sin 0G0 + cos 0Gag]
0 0

/Od V- (p’/d)zp’dp’/ \/Lp/d

21 21
/ 40 / d0' [sin 0 Glgyr + cos 0'Gap]
0 0

_|_

2T 2T
o - d6 / d0'Gog.
0

ja) W
/\/pMd Q=

The components of dyadic Green’s function in the cylindrical coordinate system

are defined by

G,y = (cos(e—ef)—i > )G,
W2 0p0y

G = (sm(a_e')_k;p,%;(y) a,

Goy = (_sm(a_e')_k%ag—;ﬁ) a,

Goor = (COS(@—@')—%W&?—;Q/) a,

where (7 is the free-space scalar Green’s function which can be expressed as

e"IRR 1 e qdq

G = —=— R
drR 4AxJo ¢ — N/ JolgF)
I & o qdq '
= - (2 — dop) cosn(f — ') ; \/7762 Julgp)Jn(qp).
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The impedance functionall'in terms of these coefficientsI'may be written as

(a By + 0B

djwe [a%Cf‘f‘ + a1, O + b%C{ﬂ{]
or
. aa a a 2
tjwe [alCT + b O + 05C1] 2(k) = (0B} + b BY) (3.69)
A stationary property of ZI'i.e.I'0Z/0a; = 0l'yields
aa ab 'ZO a
2@1011 + 61011 = —] %B17 (370)
andl'similarly from 0Z/db; = 0'we have
ab bb 2o
alcn + 2[)1011 = —] ﬁBl (371)
Solving two linear algebraic equationsI'we obtain
Zy C2BY — 20" B
4 = ]i 11 1bb 11 6127 (3.72)
1CiC — (08)
Zo C8Bs — 204 BY
b, = ;o tuth 1157 (3.73)

J )
2kacgpon (o)
Once the unknown coefficients a1(k) and b1(k) are determinedI'the impedance

functional can be calculated from the definition
Z(k) = a, B! + b, B]. (3.74)
We can also calculate the longitudinal coupling impedance which may be written as

Z(k) = a1 BY + by BY™. (3.75)
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We first evaluate C'2. The corresponding integral in angle variables becomes

27 27 2 >
/’/ d0d0' Gy = /’/ d0d0’ cos(0 — 0) 3 (2 — bo,) cosn(0 — 0')
0 0 0

2T 2 1 82 o0
— dodo’ — 2 — bon -0
/0 / k2pp’ 0006 ZO:( on) cos n( )

qdq

. e Ji(qp)Ji(qp’).

From the orthogonal property of trigonometric functionsI'we get

2T 2T o) d
A 0 MMGW—W/ 2 Ji(ap) i ap)-

/q T2
If we define
d)
I} = / __le/d) 1(qp)pdp,
' V1= p/d
we have
% =x .-
0 V¢ — k2t

A similar procedure yields

cy o= 0,

C = lmg+gy mﬁﬁy

_/ _qdg
2 Jo \q* — k?

where [§ and I§ are defined by

Iy = /(Jd\/1—<§)2Jo(qp)pdp,
Iy = /(Jd\/1—<§)2Jz(qp)pdp-

Since Cflb = 0I'the unknown coefficients a; and b; are simplified to

Zy B 2y Bf
= I 7 e U= I A
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(3.76)

(3.77)

(3.78)

(3.79)

(3.80)

(3.81)

(3.82)

(3.83)



We further note that

tjwedkCly = tjwe [ [ <a1 1— (p/d)z) G, 010, 0') <a1 1— (pf/d)z) dSds’
a Sa
(3.84)
which indicates that

Cif = Cn/2, (3.85)

where (41 is defined in Eq. (3.26)'Section 3.3.2. We also note that By is equal to By
defined in Eq. (3.25)'Section 3.3.2. ThusT'we only need to evaluate C? and B?.

Before we carry out the necessary integrals for C?'T'we note that if we define

Zo | BY 2 7o | B1|?
Zu(k) = aBi"= ]4]: |Ci1iL = 22 |Ci1| (3.86)
7 Bb 2
Zp(k) = bBr= 42 |C§ : (3.87)
Z(k) can be written as
208) = Zu(k) + Zu(h), (3.59)

where Zp(k) is already calculated in Section 3.3.2. From thisl'we find that the
tangential fields in the hole due to electric field and magnetic field contribute to the
impedance separately.

In order to show the order of approximationI'we adopt the following notation

ZWNHM) — 7N | 7 (M) (3.89)

Y

where M or N denotes the order of approximation or the number of terms used for
the trial field['and Z}IN) = ZW) is calculated in Section 3.3.2.

Using Sonine’s first finite integral formulal'we evaluate I as followsI’

/ \/% 1(gp)pdp
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) /2 ) g
= d/ J1(gd sin 0) sin” 6d6
0

e ﬁ J3/2(qd)
2 (qd)/*
Substituting the above into Eq. (3.78)'we obtain

2d3 o d
Cfi__ L/ (sz?kg

(3.90)

Introducing a new variable a = kdl'we separate the above into two parts['that isI’

2d3 7.‘_2d3
Oy g
11 2 2

(1 = 1Ip),

where

I :/OO Syl el @) gy [ Jap(@oel) )
1 o q Eiiziii 9 2 0 \/gjijiij .

From the product representation of the Bessel function

2 /2
Ju(2)],(2) = ;/0 Jytv (22 cos @) cos(pp — v)0d, Re(pu+v) > —1,

/2 00
L = 2/ COS@d@/ ‘B(qu%dq,

2 (9
I, = —/ cos 2(9d(9/ Jl qcos dq.
We first consider the real part of [.

/2 00
Re I, = 2/ cos@d@/ qu,
avq- —

J32(2a cos )
N _/ cos@d@[ 2 cos )12 3/27

where we used the integral formula?

/OO M (:1;2 _22)“dx _ w] (az),

pr—1 artlzv—p—1 v—p—1

1
> A —1.
a 0Re<2 4)>Re,u> 1

2See reference [30], p. 417.
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When v is half of an odd integerl'the function .J,(z) has a finite representation in

terms of algebraic and trigonometric functions of zI'i.e.I’

5 i
Jspa(2) = — (smz — COS Z) )

Tz z
Then
/2 i
Re I} = L do M — cos(2acos 0)| .
7a? Jo 2ccos b
If we define
/2 i
Fi(a) = / sin(2a cos §) a0,
0 2cos
we find
Re I, = % [F1(Oé) _ EJO(QQ)] '
T « 2
Since

/2
Fla) = /0 cos(2ar cos 0)df = g]o(Zoz),

it follows that

Fi(a) = /0 Fl(t)dt = g/o Jo(20)dt = %/02 Jo(t)dt.

Thus we finally obtain the finite representation of Re [ as

Rel, = [l /:a Jo(t)dt — 2J0(2a)] .

402 o

We now consider the imaginary part of [;.

(2 6)
Iml, = ——/ cos@d@/ f\/o?;i

_ __/ cos@d@/ J( 20zcos@smq§) "

a sin ¢
S3/2(2ax cos 0)
N __/ cos@d@[ 2 cos )12 3/27

62

(3.97)

(3.98)

(3.99)

(3.100)

(3.101)

(3.102)

(3.103)



where we used the general Sonine’s first finite integral formula®

/2
/ Ju(zsin 6) sin!™* 0df = ,/15 _1(2). (3.104)
0 2z H72

S,(z) is Struve’s function which has a finite representation if v is half of an odd

integerli.e.I’

z

2 2
Ssa(2) =/ 7— (1 + — — —sinz —

27 z2 oz z

2 cos Z)

2

(3.105)

With the substitution of a finite representation of Struve’s functionsl'we obtain

1 /2 1 — 2 0
Iml; = ——— df o cos O — sin(2a cos §) + cos(2a cos 0) \
7o Jo 2ccos b
1 7 Fya)
= _—71-0[2 [O{ — 550(20[) —|— o ] 5

where we used
/2
/ sin(z cos f) sin® 0df = Su(z), (3.106)
0
and Fy(«) is defined as

Fyla) =

721 cos(2acos 0
/ cos(2a cosb) (3.107)
0

2cos

It is evident that F5(0) =0 and that
, /2 ) T
Fi(a) :/ sin(2a cos 0)df = 550(20z). (3.108)
0

From these it follows that

o o 2
Fy(a) :/ Fi(t)dt = 5/ So(2t)dt = 5/ So(t)dt. (3.109)
0 2 Jo 4 Jo
Accordingly
Iy = ——— F 2.50(2 )+l/2a5 (t)dt] (3.110)
= 402 7Ta olod alto 7° ' '

3See reference [30], p. 374.
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Following the similar procedurel'we obtain a finite representation of I, as

1 20
Rel, = — [2]1(20z) —/ Jo(t)dt] , (3.111)
2a 0
20
Iml, = —— [251(20z) —/ So(t)dt] . (3.112)
2a 0
(3.113)
Since [ = [} — [;I'we find that
. 1 1 2a Jo(QOé) Jl(Oé)
Rel = + <4a3 n 2@)/() Joft)dt — =0 - L (3.114)
. 1 1 2a 50(206) Sl Oé) 1

Substituting these equations into Eq. (3.91)T'we obtain the expression for C?. For

the small values of al'we may obtain a series expansion which can be written as

1 a?  9q 4o 4a?
Hay= (14 @29 ey da ) 3.116
() 3( Ty T ) ]2777( 25 ) (3.116)

We now need to calculate B? to complete the expression for the impedance. As-

suming H' = Hye™7** e, where Hy is the field at the hole center'we obtain

d 27 d .
Bf = HO/ pdp do (p/d) cos ) ¢~ikpcost
° L—(p/d)?
d d
= —j27H, (o/d) J1(kp)pdp
O 1= (p/d)?
_ o 12 EJ3/2(kd)
= —j2xd Hoﬁ (bd)'7? "
With the substitution of €%} and B} into the expression for ZS)FEq. (3.87)['we
find
Zom Hg I3y (kd)
S o ]/(kd) . (3.117)
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It may be interesting to compare Zg)(k) and Zg) expanded in powers of kd. We

find that
3270 d H?2 17y d2H?
g 92l0d G 4 ( Jd ) 07&1( Jd )
0 = A e (14 2 - )+ 220 gy (14 2 -,
8 Zod? H? 19 27d? H? 9
70 = 82, (1——kd )— 20 o kd( Z (kd)? )
0 = I e (1= D) I gy (1= 2+

In the low frequency rangel'it is found

2 70d® H?
70 =70 4 70 ~ joTk (3.118)

which is the same as the low frequency result found in Section 3.2.

Numerical results of Zg) and ZS) are presented in Fig. 3.5. There we find that
the impedance of magnetic typel'Zg'is mainly inductive (/m Z > 0)['and the electric
type exhibits capacitive behavior (Im Z < 0).

Combining the two effectsI'we have numerical results of Z( (k) which are shown
in Fig. 3.6. We note that the resonant frequency is located at kd = 1.35. We also
find thatl'at the resonant frequencyl'the imaginary part of the impedance is zero and
the real part has its maximum which is consistent with physical argument. With this
new resultI'we revise the circuit parametersI'Eq. (3.62)'found in Section 3.3.2 to the

new one
- 1.35¢

— Q=18 R=1.62Zyd*H;. (3.119)

wy, =

When we use the trial field which consists of the three terms

21/2 23/2 d
an:al(l—p—) ex+a2(1—p—) eottn—D o (3120

z z T (pdp
we have
70 = 729 4 7. (3.121)
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Its numerical values are shown in Fig. 3.7.
In conclusionl'we have shown thatI'with the inclusion of the tangential field due to
the incident electric field in the trial fieldsI'the result is consistent with the physical

argument.
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Figure 3.6: Longitudinal coupling impedance Z(?)(kd) for various d/b values.

63



Re z2/Z,

m Z/Z,

02

d/b=0.1

d/b=0.5

AAAAAAAA

““““““

AAAAAAAA

“““““

““““““

“““““

““““““

xxxxxxx

“““““

““““““

kd

69

Figure 3.7: Longitudinal coupling impedance Z®)(kd) for various d/b values.



Chapter 4

Longitudinal Impedance of a Hole
in the Accelerator Beam Pipe

4.1 Introduction

In this chapterl'we evaluate the longitudinal coupling impedance of an aperture in
the accelerator beam pipe. Although the beam pipe can have an arbitrary cross-
section]’ we assume a beam pipe with a rectangular cross-section which is a good
approximation to the elliptical shape used in most of the electron accelerators and
storage rings.

Since the aperture connects two regionsl'inside and outside of the beam pipel'we
need to know the outside geometry to complete the specification of the problem. In
a real acceleratorl'the region outside the beam pipe coupled by an aperture is com-
pletely arbitrary; it can be a closed vacuum vessell'waveguide structurel'transmission
linel'or even a liner structure. Hencel'in order to understand the fundamental charac-
teristics of an aperture couplingl'we choose the simplest geometry which has as many
symmetries as possible.

These considerations result in the geometry of two equally shaped rectangular
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Figure 4.1: Rectangular wave guide coupled by a hole as a model to the accelerator
beam pipe with a hole.

waveguides coupled by a hole which is located in the center of the common wall.
Such a geometry is shown in Fig. 4.1.

In Section 4.2I'we will estimate the impedance in the low frequency range using
Bethe’s small hole theory.

In Section 4.3I'we will obtain the variational solutions of impedance using differ-
ent trial fields and the results will be compared in Section 4.4 with the numerical

calculation from the general wake potential program MAFIA-T3.

4.2 Low Frequency Solution

It the radius of a hole is much smaller than the wavelengthl'and the plane of the

hole is the symmetry planel'we can use Bethe’s result for the field inside hole (see
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Eq. (3.2)) which may be written as

HXE__WWEEPXEO—I_] - \/d2_p2H07 (41)

where d is the radius of the hole shown in Fig. 4.1k = w,/egpip is the free-space wave

numberl’and Zy = 377 () is the characteristic impedance of free space.
Since we have already obtained a general expression for the impedance in the low
frequency range as

270d> H?
2(k) = jTEE (1.2)

we only need to know the source fieldI'Hyl'at the hole center.
The electrostatic potential of line charge of density A located at © = z1,y = 1®,

satisfies the Poisson equation

0?®  9*0 A
@—I_a—y? = —25(:1;—:1;1)5(3;—3;1), (4.3)

where A/e can be written in terms of the drive currentl'[ol'as A/e = Zyl,.

For the rectangular waveguide with walls at © = +a, y = +bI'the corresponding

Green’s function satisfies

G 0*G
W—I— 7 = —6(x —x1)0(y — y1), (4.4)

with the boundary condition G = 0 at + = +a, y = +b. Expanding Green’s function

in single seriesI'we assume

Gla.y) = ian@)bn(:ﬂ), (4.5)

where a,(y) is the amplitude function and b, () is the basis function which is similar

to the Fourier series expansion of an arbitrary function. In a Cartesian coordinate
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systemI'we may choose b, () as

1 . nw
bo(x) = % sin %(:1; +a) (4.6)

which vanishes at = 4a and satisfies the orthonormal conditionsI’

/“ b ()b (2)d = Sy (4.7)

—a

Substituting Eq. (4.5) into Eq. (4.4)'we obtain
ol

Multiplying both sides of the equation and integratingl'we obtain

o (%92%@ﬂmm»=—ax—aw@—ym (4:8)

gﬁ%ﬁ—(gffmawz—@Aaw@—m» (+9)

Solving the above equation for a,(y) by the well-known procedurel'we find the

potential function as

2]0Z0 sin 57(x 4 a) sin 5> (2 + a)
P - 20
(z,9) Z::l n sinh 22 ””b

sinh 57(y + b)sinh 52(b —y1) ¥y <
sinh m(b Y) smh (g1 +b) vy >y

(4.10)

We note thatl'if we assumed G = Y a,,(2)b,(y)'we would have an alternative expres-
sion with ¢ and bI'z and yI'z; and y; interchanged in the above equation.
Using the relation H, = —F,/Z,'we obtain Hy at the center of the hole (x =

0, y:b, l’lzyl:O)
Ho=—20 5 L (4.11)

nwb
2a n=odd cosh 2a

This series converges fast. With thisI'we have

Zod? 1\’
Z(k) = _— k. 4.12
(k)= 6a? ( Z cosh ”2—7‘;’) ( )

n=odd
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4.3 Variational Solution

The general expression for impedance in variational method was derived in the pre-

vious chapter and was shown to be

L [fs, H - (0 x B4)as]’

Z(k)=—= 4.1
(k) 2 [s, H*- (n x E*)dS (4.13)
where H* may be calculated as
HY(r) = —jwe / G (r]r') - (n x E2)ds". (4.14)
Sa

The dyadic Green’s function G,, is of magnetic type whose boundary condition should
satisfy n x V x G,, = 0 on the walls. The eigenfunction expansion of dyadic Green’s
function for a rectangular waveguide is developed by Tai [29]. He shows that G,, can
be expanded as a double-infinite series of harmonic functions in Cartesian coordinates
(x,y,z). Since the convergence of a series of harmonic functions is very slow and the
Cartesian coordinate system suitable for the rectangular waveguide is not convenient
in describing a hole in the walll'we use the image principle to remove the guide wallsI’
enabling us to use the familiar free-space dyadic Green’s function.

Such a conversion of the geometry from a hole in a waveguide to infinite image
holes embedded in free-space is shown in Fig. 4.2. In the original problemI the
center of an equivalent magnetic surface current (replacing the hole closed by the
conducting wall) is located at the origin inside the waveguide. In the converted
problemI'waveguide walls are replaced by an infinite array of image magnetic surface
currents (“image-source”) located at © = +2na, n =1,2,3,--- and y = £4mb, m =

1,2,3,--- in addition to the original magnetic surface current (“self-source”).
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Since we have two contributions to H* from the self- and image-sourcesl'we sep-

arate H* into two partsI'namelyl’
H* = HZelf + H?mage‘ (415)

We note thatl'if the contribution from images is zerol'the impedance functional Z(k)
is the same as the one for a hole in an infinite screen. The only difference is that the
source field of the driving beam must be evaluated for waveguide structure. Thusl'we
calculate the contribution from the image-source and compare it with the contribution
from the self-source.

For this purposel'we use a simple trial field used in Section 3.3.2 which is rewritten

as

3, =nxE=o(p)e. dlp) = 1- 1 (1.16)

If we define the denominator in Eq. (4.13) as
D= /S (HZelf + H?mage) ) (n X Ea)dS = DS@lf + Dimagev (417)

then
Dty = —jwe /S /S $(p)(Cow + G )d(p)dSAS" = —joeChy, (4.18)

where C,,,, is calculated in Eq. (3.40). For small kdI' Dy s has a series expansion in

the form
72d* /1 3
Im Dyiy = —Cad), 4.19
1 Haelf 670 (oz 50t ) (4.19)
Ard? 3
D, = — 2(1—— 2 ) 4.2
ke Ducis 27y 5" ) (4.20)

with @ = kd. In the low frequency rangel'the imaginary part of Dy is dominant
which results in Z(k) ~ jk. ThusI'when we compare Dy ; with the contribution from

the image sourcesI' D, 5. 'we compare the imaginary part at the low frequency.
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For D;pqg.'we use the small hole approximation so that the image-source is re-
placed by the z-directed magnetic dipole moment M. The dipole moment may be

calculated using a general relation
J,.dS = —/ 'V - J,dS = jw/ o dS = jupM, (4.21)
S(l a S(l

which results in jwpM = %ex located at © = 2na, n = 0,£1,£2,--- and y =
2mb, m = 0,£1,4£2,-- -T'excluding the origin.

In order to calculate the magnetic field due to all image dipoles [9]'it may be
convenient to use the Hertzian potential of magnetic typel'II. Since the magnetic
dipole moment is x-directedI'II has only an & component which satisfies the wave

equation

011,
ox?
For a row of dipoles located at y = +4mbl'm = 0,1, 2, - -I'the potential becomes

M e eap [—jk\/ﬁ + (y — 4mb)? + 22]

VL, + E*1Il, = —M and H, = E*I1, +

(4.22)

I, = — (4.23)
ir == \/:1;2 + (y — 4mb)? 4 22
For this infinite sumI'we use Poisson’s sum formula defined as
> fre)=— 3 P(TE), Fw)= [ feat, (4.24)
n=—oo « n=—oo « -0

The required Fourier transformation is the integral of the type

o e—jk z2+(y—u)?
I = / e’ du
—oo v+ (y —u)?

. 0o e—jkvw2+z2
— e]qy/ e]qZ dZ
o A /1}2 _I_ 22

_ e]ql/ /OO e—x(qcoshé’-l—ksinhé’)de
— equ/ /OO e—l’\/q2—k2 Cosh(@—l—d/)de
= 26 Ko[\/q? — k2], (4.25)
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where Ko(z) is the modified Bessel function of the second kind.

ThusI'll; becomes

M m=0o0
I, = s {Ko[jk\/x? + 2242 Z CoS %[&’O[FOm\/ajz + 22]} , (4.26)
™ m=1
where Ty, = [(m7/20)* — k?].
The potential arising from all the image dipoles is obtained by replacing = by

x — 2na in Eq. (4.26). Excluding the contribution from the dipole at the originl’

Mo
I, = %n;m Ko[jk\/(:z; — 2na)? + 22|
+ M f: i cos m”[s’o[ro \/(:1; — 2na)? + 22|
b = = 2b "

M = exp [—jk\/ﬁ + (y — 4mb)? + 22]

_I_ R
2r \/:1;2 + (y — 4mb)? 4 22

(4.27)

The first term is the contribution from the dipoles on the z-axis excluding the originl’
the second term is from the dipoles not on the axis'and the third term is from the
dipoles on the y-axis excluding the origin.

Since the evaluation of H, involves derivatives with respect to z onlyl'we may

place y and z equal to zero which results in

M =

.y M &,
H3 = % Z [Xo[]k|$—2na|]—|—mz Z[&O[F0m|x—2na|]

n=—oo n=1m=1

N M i exp [—jk\/:p? + (4mb)2]
27 ooy V&% + (4mb)? '

Assuming a low frequency in the range where I'y,, is reall'we may neglect the

(4.28)

second term as Ko(x) decreases exponentially when x is real. But the first series

converges very slowly so that we transform the series into the form suitable for using
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Poisson’s sum formulal’

M
o b Z Koljk|x — 2nal] — ﬂfxo[jkbcﬂ. (4.29)

A necessary integral is

/_O:o ejqu[(o[jk (l‘ — u)2 + ZQ]du = ﬁeﬁ]l’—z v a?—k? (430)

from which we obtain

M e
16Clb FOn

M

—b Z Koljk|x — 2nal] =

(4.31)

where Iy, = \/(n7/a)? — k2.

The final expression for I, becomes

[ L= Vs M = exp [ —ky/2? + (4mb)2]
Y L (4.32)
2 —

I, = —Kyljk
16Clb n=—00 FO” 8 b XO[] |x|] * 1’2 + (4mb)2

For the fieldl'H,I'we need 9?11, /dx? which is given by

011, M & /ar\2e&wT  ME? . Ki(jka)
—_— = - — Ko(jk —
07 Toab 2 ( a ) Ton | 8rb l oljke) + =2
M & e7bm [k 20 klax jka , 1 1 z?
+ o5 —2+T_—+—_<]k+_) w3 |
2 m=1 T'm m T T'm T'm T'm 'm L=
where r,, = y/x? + (4mb)%.
Thusl'H, at the origin becomes
011
H, = FKII, =
+ Ox?
PV —— n ME? Ky(jkz)
= - Dyl 4 S0 DR
16ab n_z_:oo o + 8rb  jkx
M 2 —]k4mb 0 e—jk4mb jk 1
_ . 4.33
+ 27 ZI: 4mb ZI: 4mb  \ 4mb + (4mb)? (4:33)

1See reference [13], p. 736.
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Necessary formulas in evaluating the various geometric series in Eq. (4.33) are given
in Table 4.1.
If Ty, is approximately taken to be nw/a — k*a/2zxnI'the first series has the dom-

inant part

nw ak? M

gt (20 ) L
SQbZe ( 27?71) ]16ab

which is readily summed to give

M. 7k 7k k_212 _+1
s7b 7\ 1 T 24 n2sin 5 )

plus a correction part

M & r nw N ak?
8ab ‘= e T 2wn )
Thus the first series becomes
M E*  rk k? 1
— - - = ——12 —t — —— 4.34
87rbl](4 Za) nst T nzl ] (4.34)
For small zI'the second term in H, becomes
M | k? k? jkx 1
2 1 —In|l—| - — 4.
e -+ S () - 4). (4.35)

where v = 0.577 - -+ is Euler’s constant. We notice that the singularity in & vanishes
as x goes to zero.

The third series can be summed to give

M [k K2 bkt 4bk*  wk?
In4kb — 21n 2sin 2kb) — — — ' ——]- 4.
wal (In n2sin 260) = 70 =g “( 3 4)] (4.36)
Finallyl'H,. at the origin is given as
M k2 b2 P
H, = In4kb — 21n 2sin 2kb —1)— — —k*— =
" SWbl(n n2sin2kb 4 =) 5 -G -G Al )]’
ImH, = M (7, 4_bk3
87b \ 2a 3
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o jnT el _ 1 7 z
Y1 e o7 = —5 t+Lcot g, O<z<nm

N 2 4
Sinel” —fes?§= k(145 5G4, 0<e<n
e —In(l—¢”) = —In2sin £ + j 552, 0<a<2r
Yl 2 2or—g)—j(xl 2 0 5
1 2 g 2T —Z)—Jirne —T— , < x <27
nz . 2 2 3 2 32 4 1
Pt (e omt )y (Pme -2 2 )y L 0<a<2n
1 2
X0 T

> n% 1.202056903

Table 4.1: Geometric Series

which is valid for low frequencies.

With this field'we obtain

2 (d
Im Dipage >~ —gZO (Z) o, a=kd. (4.37)

Comparing this with Dy sI'we see that the contribution to the impedance from
image sources is negligible in the low frequency range if the hole size is small compared
with the waveguide dimensionl'which is often the case in a typical accelerator beam
pipe.

ThusI'for the hole in a rectangular waveguidel'we use the same analytic formulas
obtained for the impedance of a hole in an infinite screen except that the source field
appearing in the formulal'Eq. (3.56)'must be evaluated in the waveguide which is

shown in Eq. (4.11).
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4.4 Comparison with Numerical Results

In order to verify our analytical resultsI'we compare them with the numerical results
from MAFIA-T3 which is a 3-D wake potential program. As mentioned in Chapter
ITMAFTA-T3 simply calculates the wake potential of the charge distributed in spacel’
i.e.I'bunch potential. It assumes a bunch of charged particles in Gaussian distribution
moving with velocity equal to the speed of light.

One of the geometries used in the MAFIA-T3 simulation is shown in Fig. 4.3
where we use a waveguide of width 2a = 2 emI'height 26 = 1 emI'the radius of a hole
d = 4 mmTI'and thickness of a hole plane £ = 1 mm. Although our method has been
developed for a hole in a zero thickness planel'the numerical program cannot handle
zero thickness.

The corresponding bunch potential together with the Gaussian bunch shape are
shown in Fig. 4.4. We observe that the wake potential has a long tail similar to a
damped harmonic oscillator. Such a long range wake potential results in an impedance
with narrow bandwidth at a well-defined resonant frequency. Resonance phenomena
are expected because the induced field in the hole bounded by the circular conducting
edge will support a standing wave. When the hole size is reduced to 1 mmlI wake
potential is quickly damped out after the bunch traverses the hole. Such a short-
range wake is shown in Fig. 4.5. Because of the short range in timel'it will exhibit a
broadband impedance in the frequency domain.

With this wake potentiall’we have to perform a Fourier transform in order to
obtain the coupling impedance. The first step is to calculate V (w) which is the direct

Fourier transform of bunch potential from MAFIA-T3. For d = 4 mmI'the result is
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shown in Fig. 4.6.
After this step'we can obtain the coupling impedance by

Viw)

Zw) = qo 1) = car [—%(WZ/C)Z] , (4.38)

where [(w) is the Fourier transform of the Gaussian bunch with rms bunch length o..

In practicel'Z(w) can be computed only up to some limiting frequency because of
the exponential factor in the equation. We choose the limiting frequency to be the
one for which the exponential factor is five. Results for a hole of radius 4 mm are
presented in Fig. 4.7 showing the resonance behavior with sharp peaks.

As a general rulel'three-dimensional mesh programs such as MAFIA-T3 require
a large amount of CPU time and a considerable memory size. In order to reduce the
number of meshesI'we take advantage of the symmetry in geometry. For examplel’
instead of using full geometry as shown in Fig. 4.3 and running the program once

with the boundary conditionI’
tangential electric field E = 0 on the guide walls,

we may use only the bottom half of the geometry with two separate boundary condi-
tionsI'E = 0 and Hj; = 0 on the plane of the hole (symmetry plane). By doing thisI
we can save both the number of meshes and the CPU time.

Three different resultsl'one using full geometry and the other two using half ge-
ometry with E| = 0 or H = 0 are shown in Fig. 4.8. We notice that the impedance
from the E| = 0 boundary condition is completely negligible. In factI'if the thickness
becomes infinitesimallits impedance should be zero. ThusI'by utilizing the symmetry
configurationl'we only use half geometry with boundary condition H = 0 and divide

the result by a factor of two in order to achieve the same result as the one from full
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geometry. All results from MAFIA-T3 calculations shown in the later figures were
obtained by this method.

We compare the coupling impedance from the variational method and from MAFIA-
T3 simulations for the holes with radius 1 mmI2 mmI4 mm. The result for the hole
with radius 1 mm is shown in Fig. 4.9. Since the ratio d/b = 0.2 is smalll'our vari-
ational resultI'based on the assumption that the interaction between the hole and
waveguide is smalll'is expected to be in good agreement with the numerical result
which includes the effect of waveguide structure. From the MAFIA-T3 resultsI'we
find that the resonance occurs at the frequency kd = 1.8. The variational result shows
the resonance at kd = 1.35. Although the predictions of resonant frequency from the
two methods do not agreel'results indicate that the resonance behavior is a property
of the hole because the frequency of the dominant propagating mode is 16 GHz for
the T'My; model'which is far below the resonant frequency. We also observe that the
variational result at the low frequency range is approximately a factor two larger than
the numerical one. This may be explained as the thickness effect. Gluckstern [11] has
shown that the coupling impedance of a hole in an infinite screen with finite thickness
is reduced by a certain factorI'which depends on the ratio ¢/dl'compared to one in a
zero-thickness screen. His result shows that the reduction factor for t/d =1 is 0.567.
It we include this factor in the variational resultl'we have a better agreement with
the numerical onel’as shown in Fig. 4.10. In this comparison we should note thatI'if
the hole size is small compared with the waveguide dimensionI'the characteristics of
coupling impedance can be explained by the consideration of a hole only.

For the hole with radius 2 mmI'the numerical result presented in Fig. 4.11 exhibits

noisy peaks whichI'we believelindicate the effects of the waveguide. Howeverlits well-

84



defined envelope shows the behavior of a broadband resonator with the resonance at
kd = 1.8T'the same as the impedance for radius 1 mm. FExcept for the location of the
resonant frequencyl'the result from the variational method shows good agreement in
magnitude. The reduction factor of 0.61 due to the thickness effect for t/d = 0.5 is
included in the variational result.

An interesting behavior is observed from the numerical results for the hole with
radius 4mm. Since the ratio of a hole radius and waveguide half width is compa-
rablel'the waveguide effect may not be negligible any more. The result in Fig. 4.12
shows a strong interaction between hole and waveguide at the frequency of 16 GHz.
It corresponds to a dominant propagating mode of T'Myy. T'E,,,, modes are not im-
portant because they do not contribute to the longitudinal coupling impedance. The
reduction factor 0.70 for t/d = 0.25 is taken into account in the variational result.

We have shown that the results from two different methods are in good agreement
when the hole is small compared with the waveguide dimension. It indicates thatl’
for a small holel'the effect from waveguide structure is minor because our variational
method does not take into account such an effect. We also find that the thickness

effect is not negligible unless ¢/d << 1.
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Chapter 5

Summary and Conclusion

In this workI'we have derived analytic formulas using a variational method for the
coupling impedance of a hole in an infinite screen and in a rectangular waveguide.
The waveguide is considered as a model geometry resembling a real accelerator beam
pipe. Utilizing Bethe’s solution for the tangential electric field as our assumed field
in the holel'we have shown that the coupling impedance can be expressed as a sum of
finite functional series. The functions appearing in the formula are all well tabulated
[1]Tenabling us to evaluate the numerical values readily.

When we compare our variational formula for the impedance with a well-known
low frequency formulal'we find that the two results agree.

Finally we have compared our variational results with the impedance obtained by
the Fourier transform of the wake potential data from the program MAFIA-T3. We
have shown a good qualitative agreement between two different methods in a wide
frequency range.

Although one can in principle use MAFIA-T3 to calculate the impedance for a
realistic accelerator beam pipe with holesI'it will be very difficult to interpret or

to understand the numerical data. In particularl’when we try to parameterize the
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impedance with a modell'for example the broadband resonator modell'we may not
know whether the exact shape of the beam pipe is important or not. If importantl’
we must include a beam pipe dimension as a parameter in order to fit the numerical
data. But we simply cannot answer such questions from numerical results alone.

From the analytical treatment presented in this workl'we have shown that impor-
tant parameters such as the resonant frequency and the bandwidth of resonance peak
can be derived as functions of the dimensionless quantity kdI'where k is the free-space
wave number and d is the radius of a hole. Since these two parameters together with
the slope of impedance at low frequency are enough to describe a resonatorl'our find-
ings are very useful in understanding a complicated behavior of impedance obtained
by numerical programs.

In conclusionl'we have raised the treatment of the hole-coupling problem from the
analysis valid in the low frequency range to one valid in a wide range of frequencies.
By doing so we have succeeded in enlarging our understanding of the hole-coupling
problem.

As a further investigation'we may continue to develop a semi-analytical method
for the estimate of the coupling impedance of an arbitrarily shaped aperture in a
realistic beam pipe. This effort may have dual purposes. FirstI'it can be used to
verify the purely analytical resultI’especially the one from an approximate method
such as a variational method which we considered in this work. Secondlyl'it may
enable us to calculate the impedance without a severe requirement on computer time

and memory which often limits the usefulness of the purely numerical method such

as the computer code MAFIA-T3.
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