Water and Air Handling Systems at the
Advanced Photon Source

Environmental Control for Critical Applications

F T U5 DEPARTMENT OF
& (i 5
(@) ENERGY



Water and Air Handling Systems

= Water and air systems provide a means of heat transfer to cool and temperature
stabilize technical equipment and to control space environments.

= Key parameters include:
Heat transfer rate
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Water Cooling Systems

The APS Cooling Water System (CWS) is a multi-stage fully integrated cooling
network that includes the following subsystem components:

e Cooling Tower Water Subsystem (TWS)

e Primary Refrigeration/Chiller Subsystem (PCHWS)

e Secondary Chilled Water Distribution Subsystem (SCHWS)
e Deionized Process Cooling Water Subsystem (PWS)

e Ice Thermal Storage and Distribution Subsystem (TSS)

Energy flow path for
the APS system:
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Cooling Tower Water System

= Cooling Tower Water System (TWS)

— Consists of 3 Cooling towers
e Two 3 cell towers
e One 2 cell tower

APS Cooling Towers Looking North

= The TWS can reject a total of 18,150 tons
(63.8 MW; equivalent):

= Water is pumped through a common manifold
to:

= Chilled Water System

= Deionized Process Cooling Water System
= Thermal Storage System

APS Cooling Towers - View from LOM 431 Looking East
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Cooling Tower Water System
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Cooling Tower Water System

Psychometrics of Evaporative Cooling

Each tower cells can flow
33,000 Ibm of air per minute.
For a peak tower flowrate
total of 260,000 Ibm per min.

4 H=(56.5- 40.5) Btu/Lbm = 16 Btu/tbm / -,

APS Cooling Tower
Psychometric
Process under design
conditions.

Typical Cooling Tower
Psychometric Process
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Water Cooling Systems

= There are two primary water cooling systems at APS that are connected directly
to the heat loads:

— Chilled Water System (CHWS)
e Provides cooling to the PWS, air handling units and tertiary process cooling systems.
e Cooling is provided by vapor compression centrifugal chillers
* Heatis rejected from the chillers to the APS TWS

— Deionized Process Cooling Water System (PWS)
e Primarily used for heat rejection for power supplies, magnets, and beam lines
e Two Stage Cooling System
— First stage is evaporative cooling via direct connection to the APS TWS
— Second stage is chilled water cooling using water from the APS CHWS
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Chilled Water System

LET US LOOK AT
THE CHILLED
WATER SUB
SYSTEM
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Chilled Water System

= The APS chilled water system is a district cooling system with a peak capacity of
12,150 tons (42.7 MW, equivalent).

= The primary system consists of:
— Three (3) 2100 ton R-22 centrifugal chillers installed in 1992
— 12,000 ton-hour ice water thermal storage system (R-22)
— 1400 ton R-134a centrifugal chiller and two 1700 ton R-134a centrifugal chillers.
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Chilled Water System
Chlller RefrlgeratlonCycIe
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Chilled Water System




Primary - Secondary Water Distribution Systems

= These systems are employed to achieve any or all of a combination of the
following:

— Fluid Separation
— Temperature Control
— Pressure Elevation

= There are two general methods of creating Primary — Secondary systems. Both
methods are used in the APS water systems.
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Primary - Secondary Water Distribution Systems

— The Heat Exchanger Method provides a physical barrier between fluids
typical examples are:

Plate and frame heat exchanger Shell and tube heat exchanger

Straight-tube heat exchanger s*;lelllés,ide
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(one pass tube-side)
tube sheet tube bundle with ﬂ tube shest

straight tubes
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Primary - Secondary Water Distribution Systems

Integral Primary — Secondary system Method
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Chilled Water System

= Returning to our discussion of the Chilled Water System-

= The chillers are connected to create the primary water loop for the APS

— Each chiller is provided with a dedicated primary pump to establish water circulation

through each machine.
— Secondary pumps are connected to circulate water in the main distribution loop that

carries water to its point of use.

Variable-spead Differemial-pressure
secondary pumps (DP) sensor
Cwe
@ Building
e load
Neutral bridge ® _W_%_D
= 1} L = " T -Way
. alternate location’ Cwe | by
A typical example |7 » conirelvalve

of this B -
arrangement _'-I‘— P Building decoupler
E Variable-spead i
: building purmp?
Constant-speed
primary purmpes

1) Alternate location of nautral bridge for unequal chiller Inading.
2) Buildings may include purnps that must ba decoupled from secondary loop,

Typical primary secondary loop
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Chilled Water System
Capacity and Temperature Control

= The primary temperature control of the chilled water is provided internally by
the chiller capacity control inlet vanes and the control panel provided with the
chiller by the manufacturer.

Figure 10, Compressor Inlet Guide Vanes

The APS chillers are constant water
flow units and the water
temperature control is maintained
by modulating the refrigerant flow
within the chiller.

This is accomplished by inlet
vanes that open and close
restricting the flow into the
compressor.
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Chilled Water System
Capacity and Temperature Control

= Capacity control of the system as a whole is based on a combination of:

— The number of chillers operating
— Flow rate through the secondary system
— The temperature of the water returning from the load.
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Chilled Water System
Capacity and Temperature Control

Proper capacity control affects the - ——— G0 : -
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chiller’s internal controls will
control water temperature sent
to the loads.
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Chilled Water System
Capacity and Temperature Control

= Affects of Unbalanced Flows on Chilled Water Temperature Stability

Balanced Flow Condition Unba|anced Flow Condition
e e e bsor g
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When flows are in balance the mixing When flows are not in balance the
point occurs in the correct location mixing point shifts location and the
and the chillers control the supply chillers no longer determine supply
water temperatures. water temperature.
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Deionized Process Cooling Water System

The deionized process water system is designed to provide up to 12,000 gpm of
cooling water to the APS accelerator components and beam lines. The system
currently provides up to 2500 tons (8.8 MW) of heat rejection.

The original system design
was for a single stage of
cooling.

Heat transfer was directly to
the APS tower water system
and water was to be provided
at 90 F.
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Deionized Process Cooling Water System

= Subsequent to the completion of the system construction the operating
conditions for the system were changed in order to meet new operating
parameters set for the APS storage ring.

— The DI water supply temperature was lowered to 74 F.

— This necessitated a change in the design of the main process cooling loop
e The cooling tower could not produce 74 F during warm and summer operation
e The single stage cooling was modified to a two stage cooling system.
* The second stage of cooling was connected to the APS chilled water system.
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Deionized Process Cooling Water System

= The new configuration uses tower water for the first cooling stage and chilled water to
achieve the final supply water temperature set point.

‘ CHILLED WATER ‘

—
Lo

o)

A

I WA
EAT N UM
R
T
N
! ‘ PW TO APS >

PW FROM APS ‘

Advanced Photon Source AES Site Operations
22




Deionized Process Cooling Water System
Distribution System

= Process water distribution system uses an Integral Primary-Secondary pumping
system to that distributes low pressure water to multiple secondary pumping
stations.
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Each secondary pumping station creates a o owmeres

semi-independent process water loop : . ; e
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lce Thermal Energy Storage System
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lce Thermal Energy Storage System

The compressors feed a refrigerant accumulator and pump package that
supplies liquid refrigerant to the coils in the ice water storage tank.
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&
lce Thermal Energy Storage System

— Ice forms on the exterior of the refrigerant coils.
— The coils are immersed in a 250,000 gallon concrete water storage tank.

— Water is circulated from through the tank in a serpentine pattern to melt the ice and a
uniform rate accords the individual coils.
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lce Thermal Energy Storage System

= Methodology of Ice Production
= A liquid overfeed refrigeration system used to make ice.

= Liquid refrigerant is accumulated in a storage vessel and pumped at
a rate to insure that the refrigerant is at a minimum 70 percent
liquid.

= This insures a constant temperature of refrigerant through the
entire length of the coil.

= Under these conditions the ice thickness along the entire coil
length will be uniform.

l Evaporator

Ligquid pump

Suction \d Discharge
Line {SL} Line (DL)

Compressor
Condenser >

Liquid Line

Liguid separator

Expansion
valve
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lce Thermal Energy Storage System
Integration into the Chilled Water System

= Utilization of Ice Water

= The ice water is used as a second stage of chilled water cooling.

Water leaving the chillers is pumped into the chilled water secondary loop.

Before exiting building 450 the chilled water is redirected to a set of plate and frame heat
exchangers.

Heat is exchanged between the 40° F chilled water and the 32° F water from the ice tank.

The final temperature of the chilled water is controlled by the amount of chilled water
diverted into the these heat exchangers.

= Advantages of Ice Water Cooling

The ice water provides a constant temperature source of cooling that is inherently stable

The temperature of the tank does not vary; heat transfer is through change of state
converting ice to liquid water.

During humidity excursion in the summer; lower water temperatures provide lower cooling
air dew point temperatures for increased space dehumidification

Ice build takes place at night during off peak electrical hours yielding energy cost savings.
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Air Side Heat Transfer

Advanced Photon Source AES Site Operations




Ailr Side Heat Transfer

The majority of air handling systems at APS are designed to operate with
constant supply air temperatures and provide variable air flow rates to satisfy
cooling demands and ventilation.

FDegF Sipply F o M

One system supplies multiple spaces E:; = % -

each with differing needs for cooling and e

heating the system provides a constant -

cooling air stream. {

= As heatis needed to avoid space sub- i Ben
cooling air flow to the space is reduced e N N
until the minimum ventilation limit is R DaF Dachage B00sF Dichape Nowgt Dachize
reached. I Zire Zomet Zure
TDegF

At Fan l 1 . I .

= |f the space continues to sub-cool heat

— L J .
(reheat) is added at each zone either Bt — = -

from air borne waste heat or from the
APS LTW heating system.
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Air Side Zone Temperature Control
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Air Side Zone Temperature Control

= Most other buildings and spaces use conventional variable air volume

terminal units.

=  These consist of an air flow meter and modulating damper to adjust
air flow rate to maintain space temperature.

=  Reheat coils are added to neutralize the cooling effect preventing
space sub-cooling when box flow rates reach minimum allowable

levels.

Remavable flow sensor (optional).

Beaded inlet for consistent roundness and low leakage
construction, sized to fit standard round duct.

Unique integral fold fabrication methed increases lining and
casing integrity and minimizes leakage.

Standard insulation is Y-inch dual density fiberglass, to resist
arosion at surface velocities up to 5,000 fpm. Meets requiremeants
of NFPA 90A and UL181.

AeroCross™ multi-paint, center averaging sensor amplifies fiow Delrin® damper bearings provide smoother damper operation.
signal for bast contrel of low flow rates. Center averaging feature

provides signal accuracy reg of inlet duct configurati

Damper design provides smoather airflow for reduced sound
levals and lower laakage.

Flow measurement taps included when velocity sensor is
pravided, for easy balancing connections.

Cut away of VAV Unit
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Experiment Hall Temperature Control
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Experiment Hall Temperature Control
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Experiment Hall Temperature Control
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Experiment Hall Temperature Control

Examples of space temperature
control using induction fan terminal

EAA Magnet Measurement Room Space Temperature vs. Time

units.

2 fag dway

Hutch 34 ID E Space Temperture Trend

Temperature set point 72 F
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Sustainability - Environmental and Economic
Considerations

= APS has a large “carbon footprint” and incurs energy costs that reflect this.
— Monthly electrical energy consumption averages 9 GW hours.
— Electric Costs are on the order of $7,000,000 per year

APS Elect Usage Comparision FY 2007 and FY 2008

&\ Py 2007
7 \v

"
£ 5000000

4,000,000

— Our laboratory spaces use large quantities of ventilation air for vapor dilution and
removal.

* APS uses approximately 18 GW hours of energy per year to heat this ventilation and supply
the other building heating needs.
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Sustainability - Environmental and Economic
Considerations

= APS generates sufficient waste heat Some ANT. Heating Encrey Facts
. HEAT RECOVERY CAN CUT OUR HEATING COST IN HALF
to heat all of the loads in the 400 R
area WIth SUffICIent heat Ieftover to ENERGY CONSUMPTION AND GREEN HOUSE GAS EMISSIONS

heat most of the rest of the
Argonne Site.

— Recycling waste heat would result
in a sustainable decrees in the APS
and ANL carbon footprint.

STEAM ENERGY COST $0.16

HEAT PUMP EQUIVALENT ENERGY COST __ $0.08

HOW?
e Yielding substantial operating cost ‘ ,
ANL Winter steam peak demand is about: 180,000 Ibs per hour
sav'ngs to the Laboratory Equivalent to: 46 Megawatts

ANL Yearly heating consumption is about: 726,000,000 Ibs of steam per year
Equivalent to 180,000 Megawatt hours
Or: $7.000,000 per vear steam cost

Waste heat extraction with heat pumps

Can produce over 4 Kw of heat for 1 Kw of electric power

Equivalent to: 16 pounds of 200 psig steam
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Sustainability - Environmental and Economic
Considerations

= Challenges to exploiting APS waste heat

Waste heat is generated at very low temperatures

e Typically <27 °C
The maximum Carnot efficiency using the winter outdoor air as a heat sink is less than
10%
That said; extracting even 5 % of the yearly APS waste energy would result in the
recycling of:

e Over 5 GW hours of energy
Using direct heat transfer techniques can yield nearly 100% of low grade heat transfer

if the paths to sinks operating within certain low temperature regimes is strategically
exploited.

Advanced Photon Source AES Site Operations
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Sustainability - Environmental and Economic
Considerations

The first heat recovery system was installed at APS for the Linac Ventilation in 2005 as a
prototype to verify the efficacy of the concept.

Low grade waste heat from the APS Linac

process water cooling system was recycled to
provide the heating source for the autumn, P , :
winter, and spring season. s ol

- s B R
iy VM uls

Sufficient heat was extracted to fully satisfy the
heating demands except in the most extreme
winter conditions.

During the first year of operation over
400,000,000 BTU (118 Mw-Hrs) of energy was
saved

Advanced Photon Source AES Site Operations
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Sustainability - Environmental and Economic
Considerations

= A multi stage heat recovery system was designed and incorporated into the CNM.

This system is based on three stages
of waste heat reclamation:

This would account for an average
yearly saving of over 3.5 billion Btu
(1000 Mw hrs) of heat.

Over $ 25,000 of average yearly
energy savings.

Advanced Photon Source AES Site Operations
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Sustainability - Environmental and Economic
Considerations

= Asingle stage heat recovery system using process water waste heat was installed for the
storage ring and with enhancements to the system controls improved the storage ring
temperature stability with a substantial reduction in energy consumption.

n An order of magnitude improvement in space temperature stability
n A reduction in energy usage averaging 14 Billion Btu (4100 Mw hrs) of heat.

n Over $100,000 in annual energy savings.
Storage Ring Air Temperatures
October 4 through 6 2006
79.0
77.0

’ ——Temp (F) Sectors 7 & 8 Modified
Controls
P ——Temp (F) Sectors 11 & 12
A Unmodified Controls

-
w
=}

=1

Temp (deg F)

~
[y
o

69.0

67.0

65.0

Time
94E+00
39E+01
09E+01
84E+00
08E+01
78E+01

7.43E-01
71E+00
48E+01
70E+00
25E+01
A7E+00
24E+01
94E+01
37E+00
34E+00
63E+01
33E+01
24E+00

6
1
2
3
1
1
7
1
2
4
1
=1
1
8
1
2
5
1
1
2
9
1
2
6

Advanced Photon Source AES Site Operations
42



Sustainability - Environmental and Economic
Considerations

n Another heat recovery system was
installed in each of the APS Lab Office
Module Buildings resulting in:

n A yearly energy savings of over 7 Billion Btu
( 2000 Mw hrs)

u Over $ 32,000 in annual energy savings.

Our latest heat recovery system installed
for LOM 438 provide virtually all the
building heat with storage ring waste heat.

Advanced Photon Source AES Site Operations
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Sustainability - Environmental and Economic

Considerations

= A summary of Energy Conservation
Measures implemented over the
past 14 years

— Yielding nearly $700,000 in yearly
energy savings.

Advanced Photon Source AES Site Operations

Total Energy Saving per Cost
Argonne HEMSF Energy Consenvation Measure Wear Savings per|
FYy 2000-2008 TU™G BIU W Hrs Year ($)
Linac Heat Recovery System Prototype 410 1200% 4,700
(CMM Building 440 Multi-Stage Heat Recovery 4 800 14001 % 48,000
Advanced Photon Source Storage Ring HWVAC
Modifications 7,268 2130 | % 78597
Advanced Pheoton Source Addition of VYariable
frequency drives fo process water cooling system 6,830 2,002 % 116,759
Total all ECM's FY 00-D& 14,098| 4,132 § 247458
Total Energy Saving per Cost
Argonne HEMSF Energy Consenvation Measure Year Savings per|
FYy 2009-2010 T0™6 B W Hrs Year ($)
Advanced Photon Source Expenment Hall HVAL
Meodifications 16,839 4935 § 141,503
Advanced Photon Source Process Water Evaporative
Cooling System Upgrade 7,984 2,340 % 179,417
Advanced Photon Source LOM HVAC Heat Recovery 8,190 24001 § 68,1943
Advanced Photon Source Lighting Upgrade 1,648 482 § 36,999
Advanced Photon Source Lighting Controls Upgrade 1677 48921 § 23768
Total all ECM's FY 09-10 36,336 10,649 463,791




Sustainable Path Forward

Building on our work to date the APS is developing designs for a large scale system that:

Focus on synergies created within the APS improving integration of heat generating sources with
systems that require large quantities of heating for temperature control and winter operation.

Applies multiple technologies with the goal of redirecting waste energy to maximize its effective
utilization. The ultimate goal is to:

*  Recover and effectively utilized sufficient waste heat to provide the total heating demand for
the APS averaging

63 Billion BTU or over 18 Gw Hrs of energy per year.

The foundation of the these systems will be proven core technologies and strategies:
*  Direct heat transfer
*  High capacity heat recovery chillers
*  Performance based control algorithms

Layered upon these core technologies will be systems employing state or the art and other cutting edge
technologies a number of which are currently part of ongoing ANL research. Currently being considered
are:

. Aquifer Thermal Energy Storage

. Fuel Cells
. Combined Heat Power Units
. Organic Rankine Cycle Turbines

Advanced Photon Source AES Site Operations
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Sustainable Path Forward

Final Phase

18 GW Hr APS Energy
Recovery and Storage
System Concept
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Water and Air Handling Systems at the Advanced
Photon Source

Environmental Control for Critical Applications

Questions or Comments?

Advanced Photon Source AES Site Operations
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